Skip to main content

One-electron redox reactions between radicals and organic molecules. An addition/elimination (inner-sphere) path [1]

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 177))

Abstract

In aqueous solution the electron transfer between (reducing) carbon-centered radicals or (oxidizing) hetero-atom-centered inorganic radicals and organic molecules often proceeds by covalent bond formation between the radical and the molecule followed by heterolysis of the so-formed bond between the carbon and the hetero-atom. It is the heterolysis step in which the actual electron transfer between the radical and the molecule takes place. This makes electron transfer a part of the area of (heterolytic) solvolysis reactions. The rate constant for the heterolysis is sensitive to and therefore indicative of the difference in effective electron density or affinity between the radical and the molecule. Factors such as substituents or protonation/deprotonation by which the electron density or distribution is changed strongly influence the rates of heterolysis of the adducts. The observed structure-activity relations for heterolysis of the radical-molecule adducts and thus the electron transfer between the adduct components can be rationalized in terms of the classical solvolysis concepts.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References and Notes

  1. For an earlier discussion of inner-sphere electron transfer mechanisms see Ref [2]

    Google Scholar 

  2. Steenken S (1987) In: Fielden E M, Fowler J F, Hendry J H, Scott D (eds) Radiation Research, Proceedings 8th Internat Congr Radiation Research, Edinburgh 1987, Taylor and Francis, London, Vol. 2

    Google Scholar 

  3. For reviews see, e.g., Neta P (1976) Adv Phys Org Chem 12:2

    Google Scholar 

  4. Henglein A (1976) Electroanal Chem 9: 163

    Google Scholar 

  5. Swallow A J (1978) Progr React Kinet 9: 195

    Google Scholar 

  6. Steenken S (1987) J Chem Soc Faraday Trans 1, 83: 113

    Google Scholar 

  7. For recent reviews on electron transfer mechanisms see, e.g. Todres ZV (1978) Russ Chem Rev 47: 148

    Google Scholar 

  8. Albery W J (1980) Ann Rev Phys Chem 31: 227

    Google Scholar 

  9. Eberson L (1982) Adv Phys Org Chem 18: 79

    Google Scholar 

  10. Pross A (1985) Acc Chem Res 18: 212

    Google Scholar 

  11. Shaik S S (1985) Prog Phys Org Chem 15: 197

    Google Scholar 

  12. Eberson L, Radner F (1987) Acc Chem Res 20: 53

    Google Scholar 

  13. Chanon M (1987) Acc Chem Res 20: 214

    Google Scholar 

  14. For a discussion of single electron “shifts” in two-electron transfer processes see Refs [4d] and [4e]

    Google Scholar 

  15. Norman ROC (1970) In: Essays in Free Radical Chemistry, J Chem Soc Special Publication No. 24, London, p 117

    Google Scholar 

  16. Gilbert BC (1973) Electron Spin Resonance 1: 206

    Google Scholar 

  17. Steenken S, Davies MJ, Gilbert BC (1986) J Chem Soc Perkin Trans 2, 1003 and references therein, see also Ref [44b]

    Google Scholar 

  18. Koltzenburg G, Behrens G, Schulte-Frohlinde D (1982) J Am Chem Soc 104: 7311, (1983) ibid 105: 5168

    Google Scholar 

  19. Schulte-Frohlinde D (1983) In: Nygaard OF, Simic MG (eds) Radioprotectors and Anticarcinogens, Academic, New York, p 53

    Google Scholar 

  20. Solvolvsis reactions have in fact been interpreted in terms of electron transfer, cf. Ref. [4b–e]

    Google Scholar 

  21. Murdoch JR, Magnoli DE (1982) J Am Chem Soc 104: 3792

    Google Scholar 

  22. Chanon M (1982) Bull Soc Chim Fr 216

    Google Scholar 

  23. Lewis ES (1986) J Phys Chem 90: 3756

    Google Scholar 

  24. An excellent recent review of solvolysis reactions is to be found in Vogel P (1985) Carbocation Chemistry, Studies in Organic Chemistry, 21, Elsevier, Amsterdam

    Google Scholar 

  25. The validity of reaction Scheme 1 is not limited to heterolyses of covalent bonds to carbon. It covers also cases where both X and Y are hetero-atoms (e.g. oxidation of halides and pseudohalides by ·OH, cf. Ref [40] or where X is a hetero atom and Y is a metal (cf. Ref [41])

    Google Scholar 

  26. For reviews see, e.g. Wardman P, Clarke ED (1985) In: Breccia A, Fowler JF (eds) New chemo and radiosensitizing drugs, Edizione Scientifiche 〈Lo Scarabeo〉. p 21; Wardman P (1987) In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry: Principles and applications, Verlag Chemie, Weinheim, p 565

    Google Scholar 

  27. Minisci F, Citterio A (1980) Adv Free Radical Chem 6: 65

    Google Scholar 

  28. Non-“nucleophilic” radicals, e.g. alkyl radicals not substituted by a hetero atom at Ca, do not seem to react by addition to the nitro group (k≤107 M−1 s−1). There is so far no evidence that the radicals add to the benzene ring

    Google Scholar 

  29. Jagannadham V, Steenken S (1988) J Am Chem Soc 110: 2188

    Google Scholar 

  30. McMillan M, Norman ROC (1968) J Chem Soc B: 590

    Google Scholar 

  31. Adams GE, Willson RL (1973) J Chem Soc Faraday Trans 2 69: 719

    Google Scholar 

  32. Jagannadham V, Steenken S (1984) J Am Chem Soc 106: 6542

    Google Scholar 

  33. Steenken S, unpublished material

    Google Scholar 

  34. Janzen EG, Gerlock JL (1969) J Am Chem Soc 91: 3108; Sleight RB, Sutcliffe LH (1971) Trans Faraday Soc 67: 2195; Wong SK, Wan JK (1973) Can J Chem 51: 753

    Google Scholar 

  35. Eibenberger J, Schulte-Frohlinde D, Steenken S (1980) J Phys Chem 84: 704

    Google Scholar 

  36. see Lowry TH, Richardson KS (1981) Mechanism and Theory in Organic Chemistry, 2nd edn, Harper and Row, New York, p 351 ff

    Google Scholar 

  37. Fujita S, Steenken S (1981) J Am Chem Soc 103: 2540

    Google Scholar 

  38. Hazra DK, Steenken S (1983) J Am Chem Soc 105: 4380

    Google Scholar 

  39. Schuchmann MN, Steenken S, Wroblewski J, von Sonntag C (1984) Int J Radiat Biol 46: 225

    Google Scholar 

  40. Steenken S, Jagannadham V (1985) J Am Chem Soc 107: 6818

    Google Scholar 

  41. Jagannadham V, Steenken S (1988) J Phys Chem 92: 111

    Google Scholar 

  42. Steenken S, unpublished material

    Google Scholar 

  43. Adams GE, Willson RL (1969) Trans Faraday Soc 65: 2981; Willson RL (1970) Int J Radiat Biol 17: 349

    Google Scholar 

  44. For a collection of redox potentials in aqueous solution see Steenken S (1985) in: Landolt-Börnstein 13e: 147 or Wardman P (1989) J Phys Chem Ref Data 18: 1637

    Google Scholar 

  45. Bothe E, Behrens G, Schulte-Frohlinde D (1977) Z Naturforsch 32b: 886

    Google Scholar 

  46. Rabani J, Klug-Roth D, Henglein A (1974) J Phys Chem 78: 2089

    Google Scholar 

  47. Bothe E, Schulte-Frohlinde D (1980) Z Naturforsch 35b: 1035

    Google Scholar 

  48. Bothe E, Schuchmann MN, Schulte-Frohlinde D, von Sonntag C (1978) Photochem Photobiol 28: 639

    Google Scholar 

  49. Asmus K-D, Wigger A, Henglein A (1966) Ber Bunsenges Phys Chem 70: 862

    Google Scholar 

  50. Bielski BHJ, Cabelli DE, Arudi RL, Ross A (1985) J Phys Chem Ref Data 14: 1041

    Google Scholar 

  51. Al-Sheikley MI, Hissung A, Schuchmann H-P, Schuchmann MN, von Sonntag C, Garner A, Scholes G (1984) J Chem Soc Perkin Trans 2: 601

    Google Scholar 

  52. For a review see Ref [3d]

    Google Scholar 

  53. Schwarz HA, Dodson RW (1984) J Phys Chem 88: 3643. Kläning UK, Sehested K, Holcman J (1985) J Phys Chem 89: 760

    Google Scholar 

  54. Fornier de Violet P (1981) Rev Chem Intermediates 4: 121

    Google Scholar 

  55. Asmus K-D, Bonifacic M, Toffel P, O'Neill P, Schulte-Frohlinde D, Steenken S (1978) J Chem Soc Faraday Trans 1 74: 1820

    Google Scholar 

  56. Lind J, Shen T, Eriksen TE, Merenyi G (1990) J Am Chem Soc 112: 479

    Google Scholar 

  57. Neta P, Madhavan V, Zemel H, Fessenden RW (1977) J Am Chem Soc 99: 163

    Google Scholar 

  58. Chawla OP, Fessenden RW (1975) J Phys Chem 79: 2693

    Google Scholar 

  59. Davies MJ, Gilbert BC (1984) J Chem Soc Perkin Trans 2: 1809

    Google Scholar 

  60. O'Neill P, Steenken S, Schulte-Frohlinde D (1975) J Phys Chem 79: 2773; Walling C (1975) Acc Chem Res 8: 125; O'Neill P, Steenken S, Schulte-Frohlinde D (1977) J Phys Chem 81: 31; Sehested K, Holcman J, Hart EJ (1977) J Phys Chem 81: 1363; Sehested K, Holcman J (1979) Nukleonika 24: 941

    Google Scholar 

  61. Steenken S, Koltzenburg G, unpublished results

    Google Scholar 

  62. This number is based on the observation that in the reaction with SO ·−4 k(observed) for formation of optical density at 340 nm (where the ·OH adduct of benzonitrile absorbs) is proportional to [benzonitrile] up to the saturation limit (≈ 20 mM, k(observed)=5×106 s−1), as shown by 248 nm laser experiments

    Google Scholar 

  63. Hasegawa K, Neta P (1978) J Phys Chem 82: 854

    Google Scholar 

  64. Jayson GG, Parsons BJ, Swallow AJ (1973) J Chem Soc Faraday Trans 1 9: 1597

    Google Scholar 

  65. Littler JS (1970) In: Essays in free radical chemistry, J Chem Soc Special Publication No. 24. London, p. 383

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Mattay

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Steenken, S. (1996). One-electron redox reactions between radicals and organic molecules. An addition/elimination (inner-sphere) path [1]. In: Mattay, J. (eds) Electron Transfer II. Topics in Current Chemistry, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60110-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-60110-4_4

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60110-4

  • Online ISBN: 978-3-540-49526-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics