Machine learning techniques applied to the diagnosis of acute abdominal pain

  • C. Ohmann
  • Q. Yang
  • V. Moustakis
  • K. Lang
  • P. J. van Elk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 934)


High Diagnostic Accuracy Acute Abdominal Pain Rule Induction Default Rule Dutch Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hoffmann, O. Rasmussen, Aids in the diagnosis of acute appendicitis, Br. J. Surg. 76 (1989) 774–779PubMedGoogle Scholar
  2. 2.
    C. Ohmann, M. Kraemer, S. Jäger, H. Sitter, C. Pohl, B. Stadelmayer, P. Vietmeier, J. Wickers, L. Latzke, B. Koch, K. Thon, Akuter Bauchschmerz — Standardisierte Befundung als Diagnoseunterstützung. Ergebnisse einer prospektiven multizentrischen Interventionsstudie und Testung eines computerunterstützten Diagnosesystems, Chirurg 63 (1992) 113–123.PubMedGoogle Scholar
  3. 3.
    F.T. de Dombal, D.J. Leaper, J.R. Staniland, A.P. McCann, J.C. Horrocks, Computer-aided diagnosis of acute abdominal pain, British Medical Journal II (1972) 9–13.Google Scholar
  4. 4.
    C. Ohmann, M. Kraemer, Evaluierung von Entscheidungsunterstützungssystemen bei der Diagnose von akuten Bauchschmerzen — Eine Analyse publizierter Systeme, Biometrie und Informatik in Medizin und Biologie 23 (1992) 107–111.Google Scholar
  5. 5.
    C. Ohmann, V. Moustakis, Q. Yang, K. Lang, Evaluation of automatic knowledge acquisition techniques in the diagnosis of acute abdominal pain Artifical Intelligence in Medicine (in press)Google Scholar
  6. 6.
    F. T. de Dombal, H. de Baere, P.J. van Elk, A. Fingerhut, J. Henriques, S.M. Lavelle, G. Malizia, C. Ohmann, C. Pera, H. Sitter, D. Tsiftsis, Objective medical decision making acute abdominal pain in: J.E.W. Benken and V. Thevenin, eds., Advances in Biomedical Engineering (IOS Press, 1993) 65–87.Google Scholar
  7. 7.
    J.R. Quinlan, Induction of decision trees, Machine Learning, 1 (1986) 81–106.Google Scholar
  8. 8.
    J.R. Quinlan, C4.5: Programs for machine learning, Morgan Kaufman Publishers. Inc. San Mateo, California (1993)Google Scholar
  9. 9.
    The Turing Institute, NewID Software system, George House, 36 North Hanover St. Glasgow G1 2 AD, Scotland (1993)Google Scholar
  10. 10.
    J. Cendrowska, PRISM: An algorithm for inducing modular rules, Knowledge-Based Systems 1 (1988) 255–276.CrossRefGoogle Scholar
  11. 11.
    P. Smyth, R. Goodman, An information theoretic approach to rule induction from databases. IEEE transactions on knowledge and data engineering 4 (1992)301–316CrossRefGoogle Scholar
  12. 12.
    P. Clark, T. Niblett, The CN2 induction algorithm, Machine Learning 3 (1989) 261–283.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • C. Ohmann
    • 1
  • Q. Yang
    • 1
  • V. Moustakis
    • 2
  • K. Lang
    • 1
  • P. J. van Elk
    • 3
  1. 1.Theoretical Surgery Unit, Department of General and Trauma SurgeryHeinrich-Heine-UniversityGermany
  2. 2.Institute of Computer Science, Foundation of Research and TechnologyUniversity of CreteGreece
  3. 3.Stichting Deventer ZiekenhuizenDeventerNetherlands

Personalised recommendations