Skip to main content

Multiple self-organizing maps for supervised learning

  • Organization Principles
  • Conference paper
  • First Online:
From Natural to Artificial Neural Computation (IWANN 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 930))

Included in the following conference series:

Abstract

A scheme for supervised learning based on multiple self-organizing maps is presented and its performance is compared with other methods in several pattern classification benchmarks using both synthetic and real data. The advantage of this approach is that the learning method is simplified because the problem is divided into several SOMs, which are trained in the standard unsupervised way. The resulting network preserves the SOM properties like dimensionality reduction and cluster formation, while classifying with an accuaracy comparable to other supervised methods on a wide range of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T., Self-Organized Formation of Topologically Correct Feature Maps, Biological Cybernetics, 43, pp. 59–69, 1982.

    Google Scholar 

  2. Cervera, E., del Pobil, A.P., Marta, E., Serna, M.A., Unsupervised Learning for Error Detection in Task Planning, EEE Transactions on Robotics and Automation, Special issue on § Assembly and Task Planning, (submitted for publication).

    Google Scholar 

  3. Devijver, P.A., Kittler, J., Pattern recognition: A statistical approach. Prentice Hall, London, 1982.

    Google Scholar 

  4. Hertz, J., Krogh, A., Palmer, R.G., Introduction to the Theory of Neural Computation, Addison-Wesley, 1991.

    Google Scholar 

  5. Kurimo, K., Hybrid training method for tied mixture density hidden Markov models using LVQ and Viterbi estimation, Proc. IEEE Workshop on Neural Nenvorks for Signal Processing, pp. 362–371, 1994.

    Google Scholar 

  6. Naylor, J., Higgins, A., Li, K.P., Schmoldt, D., Speaker recognition using Kohonen's self-organizing feature map algorithm, Neural Networks, v. 1, pp. 311, 1988.

    Google Scholar 

  7. Kohonen, T., Barna, G., Chrisley, R., Statistical Pattern Recognition with Neural Networks: Benchmarking studies, Proceedings of the IEEE International Conference on Neural Networks, San Diego, v. 1, pp. 61–68, 1988.

    Google Scholar 

  8. Gorman, R.P., Sejnowski, T.J., Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets, Neural Networks, v. 1, pp. 75–89, 1988.

    Google Scholar 

  9. Robinson, A.J., Dynamic Error Propagation Networks, Cambridge University, PhD Thesis, Cambridge, 1989.

    Google Scholar 

  10. Cervera, E., del Pobil, A.P., Perception-based Qualitative Reasoning in Manipulation with Uncertainty, International Joint Conference on Artificial Intelligence, Montreal 1995 (submitted for publication).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Francisco Sandoval

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cervera, E., del Pobil, A.P. (1995). Multiple self-organizing maps for supervised learning. In: Mira, J., Sandoval, F. (eds) From Natural to Artificial Neural Computation. IWANN 1995. Lecture Notes in Computer Science, vol 930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59497-3_195

Download citation

  • DOI: https://doi.org/10.1007/3-540-59497-3_195

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59497-0

  • Online ISBN: 978-3-540-49288-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics