Self-organization of cortical receptive fields and columnar structures in a Hebb-trained neural network

  • M. Stetter
  • M. Kussinger
  • A. Schels
  • E. Seeger
  • E. W. Lang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 930)


Existing models for the formation of cortical receptive field profiles, orientation maps, and ocular dominance stripes address the emergence of each or some of these features separately. The present work investigates a linear Hebb-trained neural network model for the simultaneous self-organization of receptive field profiles, their arrangement into orientation maps, and the segregation of ocular dominance stripes. Both ON- and OFF-center type input neurons are considered. The requirement of a simultaneous formation of several structures leads to the prediction of additional necessary properties of the input correlation functions. The receptive field- and orientation map formation behaviour predicts, that the range, where ON-ON-correlations exceed ON-OFF-correlations within the LGN, should be about 0.6 times the retinotopic radius of thalamocortical axonal arbors. Additionally, the emergence of ocular dominance stripes requires an asymmetry between ON-ON and ON-OFF correlation functions.


Receptive Field Vortex Center Input Neuron Orientation Selectivity Cortical Receptive Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson PA, Olavarria J and R. C. Van Sluyters, J. Neurosci. 8, 2183 (1988).PubMedGoogle Scholar
  2. Blasdel GG, J. Neurosci 12, 3115–3138, 3139–3161 (1992)PubMedGoogle Scholar
  3. Bonhoeffer T and Grinvald A, Nature 353, 429–431 (1991)PubMedGoogle Scholar
  4. Goodhill GJ, Biol. Cybern. 69, 109 (1993).PubMedGoogle Scholar
  5. Hubel DH and Wiesel TN, J. Physiol. (London) 195, 215 (1968).Google Scholar
  6. Jones HP and Palmer LA, J. Neurophysiol. 58, 1187 (1987).PubMedGoogle Scholar
  7. LeVay S, Hubel DH and Wiesel TN, J. Comp. Neurol. 159, 559 (1975).PubMedGoogle Scholar
  8. LeVay S, Stryker MP and Shatz CJ, J. Comp. Neurol. 179, 223–244 (1978).PubMedGoogle Scholar
  9. Linsker R, Proc. Natl. Acad. Sci USA 83, 7508–7512, 8390–8394 (1986).PubMedGoogle Scholar
  10. Linsker R, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN), Washington, DC, 1990, edited by M. Caudill (Erlbaum, Hillsdale, NJ, 1990).Google Scholar
  11. MacKay DJC and Miller KD, Network 1, 257–297 (1990).Google Scholar
  12. Meister M, Wong ROL, Baylor DA and Shatz CJ, Science 252, 939–943 (1991).PubMedGoogle Scholar
  13. Miller KD, J. Neurosci. 14, 409 (1994).PubMedGoogle Scholar
  14. Miller KD, Keller JB and Stryker MP, Science 245, 605 (1989).PubMedGoogle Scholar
  15. Miller KD and MacKay DJC, Neural Comput 6, 100–126 (1994).Google Scholar
  16. Obermayer K, Blasdel GG and Schulten K, Phys. Rev. A 45, 7568 (1992).Google Scholar
  17. Sherk H and Stryker MP, J. Neurophysiol. 39, 63–70 (1976)PubMedGoogle Scholar
  18. Stetter M, Lang EW and Müller A, Biol. Cybern. 68, 465 (1993).PubMedGoogle Scholar
  19. Stetter M, Müller A and Lang EW, Phys. Rev. E 50, 4167–4181 (1994).Google Scholar
  20. Stryker MP and Harris W, J. Neurosci. 6, 2117 (1986).PubMedGoogle Scholar
  21. Swindale NV, Proc. R. Soc. Lond. B 208, 243 (1980).Google Scholar
  22. Swindale NV, Biol. Cybern. 66, 217 (1992).PubMedGoogle Scholar
  23. Tanaka S, Biol. Cybern. 64, 263 (1991).PubMedGoogle Scholar
  24. Yuille AL, Kammen DM and Cohen DS, Biol. Cybern. 61, 183 (1989).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Stetter
    • 1
  • M. Kussinger
    • 2
  • A. Schels
    • 2
  • E. Seeger
    • 2
  • E. W. Lang
    • 2
  1. 1.Dept. of OphthalmologyUniversity of RegensburgRegensburgFRG
  2. 2.Dept. of BiophysicsUniversity of RegensburgRegensburgFRG

Personalised recommendations