Skip to main content

The coevolution of mutation rates

  • 2. Origins of Life and Evolution
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 929))

Abstract

In order to better understand life, it is helpful to look beyond the envelop of life as we know it. A simple model of coevolution was implemented with the addition of genes for longevity and mutation rate in the individuals. This made it possible for a lineage to evolve to be immortal. It also allowed the evolution of no mutation or extremely high mutation rates. The model shows that when the individuals interact in a sort of zero-sum game, the lineages maintain relatively high mutation rates. However, when individuals engage in interactions that have greater consequences for one individual in the interaction than the other, lineages tend to evolve relatively low mutation rates. This model suggests that different genes may have evolved different mutation rates as adaptations to the varying pressures of interactions with other genes.

This work was supported in part by the generosity of the MIT AI Lab. I am greatful to M. Donoghue, P. Goss, K. Rice and L. King for their comments and support.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Axelrod. The Evolution of Cooperation. Basic Books, New York, NY, 1984.

    Google Scholar 

  2. R. Axelrod and W. D. Hamilton. The evolution of cooperation. Science, 211:1390–1396, 1981.

    Google Scholar 

  3. T. BÄck. The interaction of mutation rate, selection, and self-adaptation within a genetic algorithm. In R. MÄnner and B. Manderick, editors, Parallel Problem Solving from Nature, 2, pages 85–94. Elsevier Science Pubishers, Amsterdam, 1992.

    Google Scholar 

  4. T. BÄck. Optimal mutation rates in genetic search. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 2–8, San Mateo, CA, 1993. Morgan Kaufmann Publishers.

    Google Scholar 

  5. P. Bak and K. Sneppen. Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters, 71(24):4083–4086, 1993.

    Google Scholar 

  6. G. Bell. Evolutionary and nonevolutionary theories of senescence. American Naturalist, 124:600–603, 1984.

    Google Scholar 

  7. M. Boerlijst and P. Hogeweg. Spiral wave structure in prebiotic evolution: Hypercycles stable against parasites. Physica, 48D:17–28, 1991.

    Google Scholar 

  8. R. Boyd. Mistakes allow evolutionary stability in the repeated prisoner's dilemma game. Journal of Theoretical Biology, 136:47–56, 1989.

    Google Scholar 

  9. R. Boyd and J. P. Lorberbaum. No pure strategy is evolutionarily stable in the repeated prisoner's dilemma game. Nature, 327:58–59, 1987.

    Google Scholar 

  10. M. F. Bramlette. Initialization, mutation and selection methods in genetic algorithms for function optimization. In K. Belew and B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, page 100=107, San Mateo, CA, 1991. Morgan Kaufmann Publishers.

    Google Scholar 

  11. H. Caswell and A. M. John. From the individual to the population in demographic models. In D. Deangelis and L. Gross, editors, Individual-based Models and Approaches in Ecology, pages 36–61, New York, 1992. Chapman and Hill.

    Google Scholar 

  12. R. Collins and D. Jefferson. The evolution of sexual selection and female choice. In F. J. Varela and P. Bourgine, editors, Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pages 327–336. MIT Press, 1992.

    Google Scholar 

  13. A. M. Colman. Game Theory and Experimental Games. Pergamon Press Inc., Elmsford, NY, 1982.

    Google Scholar 

  14. V. J. Cristofalo. An overview of the theories of biological aging. In J.E. Birren and V.L. Bengtson, editors, Emergent Theories of Aging, pages 118–126. Springer Publishing Company, Inc., New York, NY, 1988.

    Google Scholar 

  15. R. G. Cutler. Evolutionary biology of senescence. In J.A. Behnke, C.E. Ellicott, and G. Moment, editors, The Biology of Aging., pages 311–359. Plenum Press, New York, NY, 1978.

    Google Scholar 

  16. Terence C. Fogarty. Varying the probability of mutation in the genetic algorithm. In Proceedings of the Third International Conference on Genetic Algorithms, pages 104–109, 1989.

    Google Scholar 

  17. J. Hesser and R. MÄnner. Towards an optimal mutation probability for genetic algorithms. In H.-P. Schwefel and R. MÄnner, editors, Parallel Problem Solving from Nature, pages 23–32. Springer-Verlag, New York, 1990.

    Google Scholar 

  18. J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  19. J. H. Holland. Echoing emergence: Objectives, rough definitions, and speculations for echo-class models. Technical Report 93-04-023, Santa Fe Institute, 1993.

    Google Scholar 

  20. M. Huston, D. DeAngelis, and W. Post. New computer models unify ecological theory. Bioscience, 38(10):682–691, 1988.

    Google Scholar 

  21. T. Jones and S. Forrest. An introduction to sfi echo. Technical Report 93-12-074, The Santa Fe Institute, 1993.

    Google Scholar 

  22. S. A. Kaufman. The Origins of Order. Oxford University Press, Oxford, UK, 1993.

    Google Scholar 

  23. S.A. Kauffman and S. Johnsen. Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology, 149:467–505, 1991.

    Google Scholar 

  24. C. G. Langton, editor. Artificial Life, Reading, MA, 1989. Addison-Wesley.

    Google Scholar 

  25. C. G. Langton, editor. Artificial Life III, Reading, MA, 1994. Addison-Wesley.

    Google Scholar 

  26. C. G. Langton, C. E. Taylor, J. D. Farmer, and S. Rasmussen, editors. Artificial Life II, Reading, MA, 1992. Addison-Wesley.

    Google Scholar 

  27. R. C. Lewontin. Fitness, survival, and optimality. In D. J. Horn, G. R. Stairs, and R. D. Mitchell, editors, Analysis of Ecological Systems, pages 3–22. Ohio State University Press, Columbus, OH, 1979.

    Google Scholar 

  28. R. C. Lewontin, October 1993. Personal communication.

    Google Scholar 

  29. K. Lindgren and M. G. Nordahl. Cooperation and community structure in artificial ecosystems. Artificial Life, 1:15–38, 1994.

    Google Scholar 

  30. C. C. Maley. A model of the effects of dispersal distance on the evolution of virulence in parasites. In R. Brooks and P. Maes, editors, Artificial Life IV, pages 152–159, Cambridge, MA, 1994. MIT Press.

    Google Scholar 

  31. C. C. Maley and H. Caswell. Implementing i-state configuration models for population dynamics: An object-oriented programming approach. Ecological Modelling, 68:75–89, 1993.

    Google Scholar 

  32. M. Milinski. Cooperation wins and stays. Nature, 364:12–13, 1993.

    Google Scholar 

  33. H. Mühlenbein. How genetic algorithms really work i: Mutation and hillclimbing. In R. MÄnner and B. Manderick, editors, Parallel Problem Solving from Nature, 2, pages 15–26. Elsevier Science Pubishers, Amsterdam, 1992.

    Google Scholar 

  34. M. Nowak and K. Sigmund. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner's dilemma game. Nature, 364:56–58, 1993.

    Google Scholar 

  35. M. A. Nowak and K. Sigmund. Tit for tat in heterogeneous populations. Nature, 355:250–253, 1992.

    Google Scholar 

  36. L. Partridge and N.H. Barton. Optimality, mutation and the evolution of aging. Nature, 362:305–311, 1993.

    Google Scholar 

  37. T. S. Ray. An approach to the synthesis of life. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, pages 371–408, Reading, MA, 1992. Addison-Wesley.

    Google Scholar 

  38. J. Maynard Smith. Evolution and the Theory of Games. Cambridge University Press, Cambridge, UK, 1982.

    Google Scholar 

  39. J. Maynard Smith. Byte-sized evolution. Nature, 355:772–773, 1992.

    Google Scholar 

  40. J. Maynard Smith. Optimization theory in evolution. In E. Sober, editor, Conceptual Issues in Evolutionary Biology, pages 91–118. MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  41. T. M. Sonneborn. The origin, evolution, nature, and causes of aging. In J.A. Behnke, C.E. Ellicott, and G. Moment, editors, The Biology of Aging., pages 361–374. Plenum Press, New York, NY, 1978.

    Google Scholar 

  42. D. M. Tate and A. E. Smith. Expected allele coverage and the role of mutation in genetic algorithms. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 31–37, San Mateo, CA, 1993. Morgan Kaufmann Publishers.

    Google Scholar 

  43. C. Taylor and D. Jefferson. Artificial life as a tool for biological inquiry. Artificial Life, 1:1–14, 1994.

    Google Scholar 

  44. J. W. Valentine and T. D. Walker. Diversity trends within a model taxonomic hierarchy. Physica, 22D:31–42, 1986.

    Google Scholar 

  45. G.S. Wilkinson. Reciprocal food sharing in the vampire bat. Nature, 308:181–184, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Federico Morán Alvaro Moreno Juan Julián Merelo Pablo Chacón

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maley, C. (1995). The coevolution of mutation rates. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds) Advances in Artificial Life. ECAL 1995. Lecture Notes in Computer Science, vol 929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59496-5_301

Download citation

  • DOI: https://doi.org/10.1007/3-540-59496-5_301

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59496-3

  • Online ISBN: 978-3-540-49286-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics