Advertisement

Distributed conflicts in communicating systems

  • Nadia Busi
  • Roberto Gorrieri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 924)

Abstract

We argue that the alternative composition operator of CCS not only lacks expressiveness, but also provides a too abstract description of conflicting activities. Hence, we propose to replace it with a unary conflict operator and a conflict restriction operator, yielding the process algebra DiX. We show that DiX is a semantic extension of CCS. Moreover, DiX is equipped with a simple distributed semantics defined in terms of nets with inhibitor arcs, where the set of transitions is generated by three axiom schemata only. This net semantics is the main motivation for the present proposal.

Keywords

Parallel Operator Operational Semantic Parallel Composition Label Transition System Conflict Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P. Banâtre, D. Le Métayer, “Programming by Multiset Transformation”, Comm. of ACM 36, 98–111, 1993.Google Scholar
  2. 2.
    G. Berry, G. Boudol, “The Chemical Abstract Machine”, Theoretical Computer Science 96, 217–248, 1992.CrossRefGoogle Scholar
  3. 3.
    G. Boudol, “Flow Event Structures and Flow Nets”, LNCS 469, Springer, 62–95, 1990.Google Scholar
  4. 4.
    G. Boudol, I. Castellani, “Three Equivalent Semantics for CCS”, LNCS 469, Springer, 96–141, 1990.Google Scholar
  5. 5.
    N. Busi, R. Gorrieri, “A Distributed Semantics for π-calculus based on P/T Nets with Inhibitor Arcs”, forthcoming.Google Scholar
  6. 6.
    G. Chiola, S. Donatelli, G. Franceschinis “Priorities, Inhibitor Arcs and Concurrency in P/T Nets”, in Proc. 12th Int. Conf. on Appl. and Theory of Petri Nets'91, 182–205, 1991.Google Scholar
  7. 7.
    Ph. Darondeau, P. Degano, “Causal Trees”, in Proc. ICALP'89, LNCS 372, Springer, 234–248, 1989.Google Scholar
  8. 8.
    P. Degano, R. De Nicola, U. Montanari, “Partial Ordering Derivations for CCS”, in Proc. FTC'85, LNCS 199, Springer, 520–533, 1985.Google Scholar
  9. 9.
    P. Degano, R. De Nicola, U. Montanari, “A Distributed Operational Semantics for CCS based on C/E Systems”, Acta Informatica 26, 59–91, 1988.Google Scholar
  10. 10.
    P. Degano, R. De Nicola, U. Montanari, “Partial Ordering Semantics for CCS”, Theoretical Computer Science 75, 223–262, 1990.Google Scholar
  11. 11.
    J. Engelfriet, “A Multiset Semantics for the π-calculus with Replication”, in Proc. CONCUR'93, LNCS 715, Springer, 7–21, 1993.Google Scholar
  12. 12.
    R. van Glabbeek, F. Vaandrager, “Petri Net Models for Algebraic Theories of Concurrency”, in Proc. PARLE'87, LNCS 259, Springer, 224–242, 1987.Google Scholar
  13. 13.
    U. Goltz, “On Representing CCS Programs by Finite Petri Nets”, in Proc. MFCS'88, LNCS 324, Springer, 339–350, 1988.Google Scholar
  14. 14.
    U. Goltz, “CCS and Petri Nets”, LNCS 469, Springer, 334–357, 1990.Google Scholar
  15. 15.
    R. Gorrieri, U. Montanari, “SCONE: A Simple Calculus of Nets”, in Proc. CONCUR'90, LNCS 458, Springer, 2–30, 1990.Google Scholar
  16. 16.
    R. Gorrieri, U. Montanari, “Distributed Implementation of CCS”, in Advances in Petri Nets'93, LNCS 674, Springer, 244–266, 1993.Google Scholar
  17. 17.
    R. Gorrieri, U. Montanari, “On the Implementation of Concurrent Calculi in Net Calculi: Two Case Studies”, Theoretical Computer Science, to appear.Google Scholar
  18. 18.
    R. Gorrieri, S. Marchetti, U. Montanari, “A2CCS: Atomic Actions for CCS”, Theoretical Computer Science 72(2/3), 202–223, 1990.Google Scholar
  19. 19.
    J.F. Groote, F. Vaandrager, “Structured Operational Semantics and Bisimulation as a Congruence”, Information and Computation 100(2), 202–260, 1992.Google Scholar
  20. 20.
    M. Hack, “Petri Net Languages”, Technical Report 159, MIT, 1976.Google Scholar
  21. 21.
    R. Janicki, M. Koutny, “Invariant Semantics of Nets with Inhibitor Arcs”, in Proc. CONCUR'91, LNCS 527, Springer, 317–331, 1991.Google Scholar
  22. 22.
    R. Milner, A Calculus of Communicating Systems, LNCS 92, Springer, 1980.Google Scholar
  23. 23.
    R. Milner, Communication and Concurrency, Prentice Hall, 1989.Google Scholar
  24. 24.
    R. Milner, J. Parrow, D. Walker, “A Calculus of Mobile Processes”, Information and Computation 100, 1–77, 1992.Google Scholar
  25. 25.
    U. Montanari, F. Rossi “Contextual Nets”, Acta Informatica, to appear.Google Scholar
  26. 26.
    M. Nielsen, G.D. Plotkin, G. Winskel, “Petri Nets, Event Structures and Domains: Part I”, Theoretical Computer Science 13(1), 85–108, 1981.CrossRefGoogle Scholar
  27. 27.
    E. R. Olderog, Nets, Terms and Formulas, Cambridge Tracts in Theoretical Computer Science 23, CUP, 1991.Google Scholar
  28. 28.
    W. Reisig, “Petri Nets: An Introduction”, EATCS Monographs in Computer Science, Springer, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Nadia Busi
    • 1
  • Roberto Gorrieri
    • 2
  1. 1.Dipartimento di MatematicaUniversità di SienaSienaItaly
  2. 2.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations