Viscous flow modelling using unstructured meshes for aeronautical applications

  • J. Szmelter
  • A. Pagano
3. Numerical Methods and Algorithms d) Euler/Navier-Stokes Equations
Part of the Lecture Notes in Physics book series (LNP, volume 453)


The novel application of viscous coupling to unstructured meshes has been proposed and developed. The method allows fro viscous flows modelling and avoids the difficulty of generating highly stretched tetrahedral in 3D or triangular in 2D elements required for Navier-Stokes solvers. The time step allowed by the explicit euler solver is limited by the size of the “Euler” mesh, resulting in faster algorithms than standard explicit Navier-Stokes solvers.


Turbulent Boundary Layer Unstructured Mesh Laminar Separation Bubble Aircraft Configuration Aeronautical Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.Peraire, J.Peiro, L.Formaggia, K.Morgan, O.C.Zienkiewicz, ‘Finite Element Euler Computations in three Dimensional.’ Int. J. Num. Meth. Engng., Vol 26, pp 2125–2159, 1988.Google Scholar
  2. 2.
    O.Hassan, E.J. Probert, K. Morgan, J. peraire, ‘Domain Decomposition Combined with Adaptive Remeshing for Problems of Transient Compressible Flow', Proc. 13-th International Conference on Numerical Methods in Fluid Dynamics, Rome 1992.Google Scholar
  3. 3.
    J. C. Le Balleur, ‘Calcul par Couplage Fort des Ecoulements Visqueux Transsoniques incluant Sillages et Decollements. Profil d'Ailes Porlant. La Recherche Aerospatiale, May–June 1981.Google Scholar
  4. 4.
    J.E. Green, D.J. Weeks, J.W.F. Brooman, ‘Prediction of Turbulent Boundary Layers and Wakes in Compressible Flow by a Lag-Entrainment Method', RAE Technical Report TR72231, 1973.Google Scholar
  5. 5.
    J.E. Green, ‘Application of Head's Entrainment Method to the Prediction of Turbulent Boundary Layers and Wakes in Compressible Flows', RAE Technical Report TR72079, 1972.Google Scholar
  6. 6.
    P. Bradshaw, ‘The Analogy Between Streamline Curvature and Buayancy in Turbulent Shear Flow', J. Fluid Mech, Vol 36, pp 177–191, 1969.Google Scholar
  7. 7.
    J.E. Green, ‘The prediction of Turbulent Boundary Laygr Development in Compressible Flow', J. Fluid Mech, Vol 31, part 4 pp. 753–778, 1968.Google Scholar
  8. 8.
    P.R. Ashill, DRA Bedford-Private Communication.Google Scholar
  9. 9.
    H.b. Squire, A.D. Young, 'The Calculation of the Profile Drag of Aerofoils', A.R.C.R. & M. 1838, 1937.Google Scholar
  10. 10.
    B.R. Williams, 'The prediction of Separated Flows Using a Viscous-Inviscid Interaction Method', RAE Tech Memo Aero 20I0, 1984.Google Scholar
  11. 11.
    A. Pagano, 'A Viscous Coupled Euler Method',, Presentation at the AGCFM Workshop on Separated Flows, RAE Farnborough, 1985.Google Scholar
  12. 12.
    J.C. Le Balleur, ‘Viscous-Inviscid Calculation on High-Lift Separated Compressible Flows over Airfoils and Wings.', Proceedings AGARD Cp-415, 1992.Google Scholar
  13. 13.
    P.H. Cook, M.A. Mc Donald, M.C.P. Firmin, 'Aerofoil RAE1822: Pressure Distribution and Boundary Layer and Wake Measurements AGARD AR 138, Paper A6 1979.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. Szmelter
    • 1
  • A. Pagano
    • 1
  1. 1.British Aerospace Airbus Limited, Filton, Technology and ComputingBristolUK

Personalised recommendations