Advertisement

Multigrid Euler solutions with semi-coarsening and local preconditioning

  • John F. Lynn
  • Bram van Leer
3. Numerical Methods and Algorithms b) Grids/Acceleration Techniques
Part of the Lecture Notes in Physics book series (LNP, volume 453)

Keywords

Mach Number Euler Equation Work Unit Flow Angle High Frequency Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lee, D., van Leer, B. (1993): “Progress in Local Preconditioning of the Euler and Navier-Stokes Equations”, 11th AIAA Computational Fluid Dynamics Conference (in Proceedings).Google Scholar
  2. [2]
    Lynn, J. F., Van Leer, B. (1993): “Multi-Stage Schemes for the Euler and Navier-Stokes Equations with Optimal Smoothing”, 11th AIAA Computational Fluid Dynamics Conference (in Proceedings).Google Scholar
  3. [3]
    Mulder, W. (1989): “A New Multigrid Approach to Convection Problems”, J. Comput. Phys., 93.Google Scholar
  4. [4]
    Mulder, W. (1991): “A High-Resolution Euler Solver Based on Multigrid, Semi-Coarsening and Defect Correction”, J. Comput. Phys., 100.Google Scholar
  5. [5]
    Van Leer, B., Lee, W.-T., Roe, P. L. (1991): “Characteristic Time-Stepping or Local Preconditioning of the Euler Equations”, loth AIAA Computational Fluid Dynamics Conference (in Proceedings).Google Scholar
  6. [6]
    Van Leer, B., Tai, C.-H., Powell, K. G. (1989): “Design of Optimally-Smoothing Multi-Stage Schemes for the Euler Equations”, 9th AIAA Computational Fluid Dynamics Conference (in Proceedings).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • John F. Lynn
    • 1
  • Bram van Leer
    • 1
  1. 1.W. M. Keck Foundation Laboratory for Computational Fluid DynamicsThe University of MichiganAnn ArborUSA

Personalised recommendations