Advertisement

Extensive analysis and cross-comparisons of past and present numerical formulations for flow problems on unstructured meshes

  • Fredéric Chalot
  • Claudine Kasbarian
  • Marie-Pierre Leclercq
  • Michel Mallet
  • Michel Ravachol
  • Bruno Stoufflet
3. Numerical Methods and Algorithms b) Grids/Acceleration Techniques
Part of the Lecture Notes in Physics book series (LNP, volume 453)

Keywords

Computational Fluid Dynamics AIAA Paper Unstructured Mesh Galerkin Formulation Scalar Advection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fezoui, L. and Stoufflet, B.-A class of implicit upwind schemes for Euler simulations with unstructured meshes, Journal of Computational Physics, 84(1), 174–206 (1989).CrossRefGoogle Scholar
  2. 2.
    Rostand, P. and Stoufflet, B.-TVD Schemes to Compute Compressible Viscous Flows on Unstructured Meshes, Notes on Numerical Fluid Mechanics, vol 24, Vieweg, Braunchweig, 1989, p.510.Google Scholar
  3. 3.
    Johnson, C.-Streamline Diffusion Methods for problem in Fluid Mechanics, R. H. Gallager et al (eds), Finite Element in Fluids, Vol.VI, Wiley, London, pp. 251–261, 1986.Google Scholar
  4. 4.
    Hughes, T.J.R., Franca, L.P., and Mallet, M.-A New Finite Element Formulation For Computational Fluid Dynamics: VI convergence analysis of the generalized SUPG formulation for linear dependent multidimensional advective diffusive system, Computer Methods in Applied Mechanics and Engineering, vol. 63, pp. 97–112, 1987.CrossRefGoogle Scholar
  5. 5.
    Hughes, T.J.R., Mallet, M. and Mizukami, A New Finite Element Formulation For Computational Fluid Dynamics: II beyond SUPG, Computer Methods in Applied Mechanics and Engineering, vol. 54, pp. 341–355, 1986.CrossRefGoogle Scholar
  6. 6.
    Leclercq, M.P., Mantel, B., Periaux, J., Perrier, P. and Stoufflet, B.-On recent 3-D Euler computations around a complete aircraft using adaptive unstructured mesh refinements, Proceedings of Second World Congress on Computational Mechanics, Stuttgart (Germany), August 27–31, 1990.Google Scholar
  7. 7.
    Kasbarian, C., Leclercq, M.P., Ravachol, M. and Stoufflet, B.-Improvements of Upwind Formulations on Unstructured Meshes, in 4th International Conf. on Hyperbolic Problems, Taormina(Italy), 3–8 April 1992.Google Scholar
  8. 8.
    Paillere, H., Deconinck, H., Struijs, R., Roe, P.L., Mesaros, L. M., Muller, J.D.,-Computations of inviscid Compressible Flows using Fluctuation-Splitting on Triangular Meshes, 11th AIAA Computational Fluid Dynamics Conference, Orlando (1993), AIAA Paper 93-9301.Google Scholar
  9. 9.
    Van Leer, B.-Progress in Multi-Dimensional Upwind Differencing, NASA Contractor Report 189708, ICASE Report No 92-43, September 1992.Google Scholar
  10. 10.
    Liou, M.S.-3-D Hypersonic Euler Numerical Simulation around Space Vehicles using Adapted Finite Elements, 25th AIAA Aerospace Meeting, Reno (1987), AIAA Paper 86-0560.Google Scholar
  11. 11.
    Jameson, A.-3-D Hypersonic Artificial, Upwind Biasing, Limiters and Their Effect on Accuracy and Multigrid Convergence in Transonic and Hypersonic Flows, 11th AIAA Computational Fluid Dynamics Conference, Orlando (1993), AIAA Paper 93-3359.Google Scholar
  12. 12.
    Ianelli, G.S. and Baker, A.J.-An Intrinsically N-Dimensional Generalized Flux Vector Splitting Implicit Finite Element Euler Algorithm, 29th AIAA Aerospace Meeting, Reno (1991), AIAA Paper 91-0123.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Fredéric Chalot
    • 1
  • Claudine Kasbarian
    • 1
  • Marie-Pierre Leclercq
    • 1
  • Michel Mallet
    • 1
  • Michel Ravachol
    • 1
  • Bruno Stoufflet
    • 1
  1. 1.Dassault AviationSaint-CloudFrance

Personalised recommendations