Gas-kinetic finite volume methods

  • K. Xu
  • L. Martinelli
  • A. Jameson
3. Numerical Methods and Algorithms a) Kinetic/Boltzmann Schemes
Part of the Lecture Notes in Physics book series (LNP, volume 453)


Artificial Diffusion Flux Vector Splitting Local Extremum Diminishing RAE2822 Airfoil Numerical Hydrodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.H. Prendergast and K. Xu, “Numerical Hydrodynamics from Gas-Kinetic Theory”, J. of Comput. Phys. 109, 53, 1993.CrossRefGoogle Scholar
  2. [2]
    K. Xu, “Numerical Hydrodynamics from Gas-Kinetic Theory”, Ph.D. thesis, Columbia University, 1993.Google Scholar
  3. [3]
    A. Jameson, “Artificial Diffusion, Upwind Biasing, Limiters and their Effect on Accuracy and Multigrid Convergence in Transonic and Hypersonic Flows”, AlAA paper 93-3359, 1993.Google Scholar
  4. [4]
    J.C. Mandal andd S.M. Deshpande, “Kinetic Flux Vector Splitting for Euler Equations”, Computers and Fluids, Vol.23, No.2, P447, 1994.CrossRefGoogle Scholar
  5. [5]
    K. Xu, L. Martinelli and A. Jameson, “ Gas-Kinetic Finite Volume Methods, Flux-Vector Splitting and Artificial Diffusion”, submitted to JCP, July, 1994.Google Scholar
  6. [6]
    A. Jameson, “Transonic Flow Calculations”, MAE Report,# 1651, Princeton University, March 1984.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • K. Xu
    • 1
  • L. Martinelli
    • 1
  • A. Jameson
    • 1
  1. 1.Department of M.A.EPrinceton UniversityPrincetonUSA

Personalised recommendations