Skip to main content

Foundations and scope of chiral perturbation theory

  • Part I Chiral Dynamics and QCD
  • Conference paper
  • First Online:
Chiral Dynamics: Theory and Experiment

Part of the book series: Lecture Notes in Physics ((LNP,volume 452))

Abstract

The aim of this introductory lecture is to review the arguments, according to which the symmetry properties of the strong interaction reveal themselves at low energies. I first discuss the symmetries of QCD, then sketch the method used to work out their implications and finally take up a few specific issues, where new experimental results are of particular interest to test the predictions.

Work supported in part by Schweizerischer Nationalfonds

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Gell-Mann, The Eightfold Way: A Theory of Strong Interaction Symmetry, California Insitute of Technology Report CTSL-20 (1961)

    Google Scholar 

  2. Y. Ne'eman, Nucl. Phys. 26 (1961) 222.

    Google Scholar 

  3. Y. Nambu, Phys. Rev. Lett. 4 (1960) 380.

    Google Scholar 

  4. J. Goldstone, Nuovo Cim. 19 (1961) 154

    Google Scholar 

  5. G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, in Advances in particle physics, Vol. 2, p. 567, ed. R. L. Cool and R. E. Marshak (Wiley, New York, 1968)

    Google Scholar 

  6. S. Coleman, Erice Lectures 1973, in Laws of hadronic matter, Academic Press London and New York (1975), reprinted in

    Google Scholar 

  7. S. Coleman, Aspects of symmetry, Cambridge Univ. Press (1985).

    Google Scholar 

  8. S. Weinberg, in A Festschrift for L1. Rabi, ed. L. Motz (New York Acad. Sci, 1977), p. 185.

    Google Scholar 

  9. J. Gasser and H. Leutwyler, Nucl. Phys. B94 (1975) 269.

    Google Scholar 

  10. S. Weinberg, Physica A96 (1979) 327.

    Google Scholar 

  11. H. Leutwyler, Ann. Phys. (N.Y.), 235 (1994) 165.

    Google Scholar 

  12. E. D'Hoker and S. Weinberg, General effective actions, UCLA-Texas preprint, to be published in Phys. Rev. D

    Google Scholar 

  13. S. Weinberg, in these proceedings.

    Google Scholar 

  14. P. Gerber and H. Leutwyler, Nucl. Phys. B321 (1989) 387.

    Google Scholar 

  15. P. Binétruy and M.K. Gaillard, Phys. Rev. D32 (1985) 931.

    Google Scholar 

  16. S. Randjbar-Daemi, A. Salam and J. Strathdee, Phys. Rev. B48 (1993) 3190; H. Leutwyler, Phys. Rev. D49 (1994) 3033.

    Google Scholar 

  17. The DAFNE Physics Handbook, eds. L. Malani, G. Pancheri and N. Paver, INFN-Frascati (1992).

    Google Scholar 

  18. S. Weinberg, Phys. Rev. Lett. 17 (1966) 616.

    Google Scholar 

  19. G. Czapek et al., Letter of intent, CERN/SPSLC 92–44.

    Google Scholar 

  20. J. Gasser and H. Leutwyler, Phys. Lett. B125 (1983) 325.

    Google Scholar 

  21. M. Knecht, in these proceedings.

    Google Scholar 

  22. H. J. Leisi et al., in these proceedings.

    Google Scholar 

  23. A. W. Thomas and R. H. Landau, Phys. Rep. 58 (1980) 122

    Google Scholar 

  24. T. Ericson and W. Weise, Pions and nuclei, Oxford Univ. Press (1988)

    Google Scholar 

  25. S. Weinberg, Phys. Lett. B295 (1992) 114.

    Google Scholar 

  26. S. Mallik, Massive states in chiral perturbation theory, preprint Saha Inst. of Nucl. Phys., Calcutta, hep-ph 9410344.

    Google Scholar 

  27. The model for the πN interaction developed by P. F. A. Goudsmit, H. J. Leisi and E. Matsinos, Phys. Lett. B271 (1991) 290; Phys. Lett. B299 (1993) shows that the low energy data may be understood in terms of effective fields. The expansion of the resonance denominators occurring in the tree graphs of this model should yield a decent approximation for the effective Lagrangian.

    Google Scholar 

  28. J. Gasser and H. Leutwyler, Nucl. Phys. B250 (1985) 539

    Google Scholar 

  29. J. Donoghue, B. Holstein and D. Wyler, Phys. Rev. D47 (1993) 2089; Phys. Rev. Lett. 69 (1992) 3444

    Google Scholar 

  30. A. V. Anisovich, Dispersion relation technique for three-pion system and the P—wave interaction in η → 3r decay, preprint Petersburg Nuclear Physics Institute, Gatchina TH-62-1993/1931

    Google Scholar 

  31. J. Kambor, C. Wiesendanger and D. Wyler, Final state interactions and Khuri-Treiman equations in η → 3x decays, preprint IPNO/TH 94-93, ZU-TH 41/94 in preparation

    Google Scholar 

  32. A. V. Anisovich and H. Leutwyler, Measuring the quark mass ratio (m 2d -m 2)u /m 2s by means of gh 3a, preprint BUTP-95/1 in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aron M. Bernstein Barry R. Holstein

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Verlag

About this paper

Cite this paper

Leutwyler, H. (1995). Foundations and scope of chiral perturbation theory. In: Bernstein, A.M., Holstein, B.R. (eds) Chiral Dynamics: Theory and Experiment. Lecture Notes in Physics, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59279-2_62

Download citation

  • DOI: https://doi.org/10.1007/3-540-59279-2_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59279-2

  • Online ISBN: 978-3-540-49227-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics