Skip to main content

Determination of laminar flame speeds from nozzle-generated counterflow flames

  • 6. Combustion Waves
  • Conference paper
  • First Online:
Modeling in Combustion Science

Part of the book series: Lecture Notes in Physics ((LNP,volume 449))

  • 292 Accesses

Abstract

The accuracy of the counterflow, twin-flame technique for the determination of laminar flame speeds was examined analytically and numerically. The analysis was conducted by using multiple-expansion, high activation energy asymptotics while the numerical simulation incorporated detailed chemistry and transport. In both approaches the solutions were obtained in a finite domain and with plug flow boundary conditions in order to better simulate the actual experiments. Results show that linear extrapolation of the minimum velocity to zero stretch over-estimates the true laminar flame speed. This over-estimate, however, can be reduced by using smaller ratios of the flame thickness to the nozzle separation distance. Numerical results indicate that for typical paraffin/air mixtures, nozzle separation distances of the order of 14 to 22 mm yield laminar flame speeds accurate to within the uncertainty range of the experiment. The results obtained herein thus provide further support for the viability of the counterflow technique, when the influence of the nozzle separation distance is properly accounted for. An alternate technique for the determination of laminar flame speeds, based on the variation of flow velocity at a constant temperature near the upstream boundary of the flame with stretch, suggest that the over-estimation by linear extrapolating to zero stretch is smaller compared to the minimum velocity approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, G. E. and Bradley, D., Combust. Flame 18:133 (1972).

    Google Scholar 

  2. Matalon, M. and Matkowsky, B. J., J. Fluid Mech. 124:239 (1982).

    Google Scholar 

  3. Law, C. K., Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1989, p. 1381.

    Google Scholar 

  4. Botha, J. P. and Spalding, D. B., Proc. Roy. Soc. London A225:71 (1954).

    Google Scholar 

  5. Wu, C. K. and Law, C. K., Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1985, p. 1941.

    Google Scholar 

  6. Yu, G., Law, C. K. and Wu, C. K., Combust. Flame 63:339 (1986).

    Google Scholar 

  7. Egolfopoulos, F. N., Cho, P. and Law, C. K., Combust. Flame 76:375 (1989).

    Google Scholar 

  8. Zhu, D. L., Egolfopoulos, F. N. and Law, C. K., Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1989, p. 1941.

    Google Scholar 

  9. Egolfopoulos, F. N., Zhu, D. L. and Law, C. K., Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1991, p. 471.

    Google Scholar 

  10. Buckmaster, J. D. and Mikolaitis, D., Combust. Flame 47:191 (1982).

    Google Scholar 

  11. Stahl, G., Warnatz, J. and Rogg, B., in Dynamics of Reactive Systems, Part I: Flames (A. L. Kuhl, J. R. Bowen, J.-C. Leyer and A. Borisov Eds.), AIAA, Washington, D.C., 1988, p. 195.

    Google Scholar 

  12. Tien, J. H. and Matalon, M., Combust. Flame 84:238 (1991).

    Google Scholar 

  13. Dixon-Lewis, G., Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1991, p. 305.

    Google Scholar 

  14. Chao, B. H., Egolfopoulos, F. N. and Law, C. K. Structure and Propagation of Counterflow Premixed Flames in a Finite Domain. Manuscript in preparation, (1994).

    Google Scholar 

  15. Miller, J. A., Kee, R. J., Smooke, M. D. and Grcar J. F., The Computation of the Structure and Extinction Limit of a Methane-Air Stagnation Point Diffusion Flame. 1984 Spring Meeting of the Western States Section of the Combustion Institute, Boulder, Colorado, (1984).

    Google Scholar 

  16. Kee, R. J., Miller, J. A., Evans, G. H. and Dixon-Lewis, G., Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1989, p. 1479.

    Google Scholar 

  17. Kee, R. J., Grcar, J. F., Smooke, M. D. & Miller, J. A., Sandia Report SAND 85-8240 (1985).

    Google Scholar 

  18. Kee, R. J., Rupley, F. M. and Miller J. A., Sandia Report SAND 89-8009 (1989).

    Google Scholar 

  19. Kee, R. J., Warnatz, J. and Miller J. A., Sandia Report SAND 83-8209 (1983).

    Google Scholar 

  20. Egolfopoulos, F. N., Du, D. X. and Law, C. K., Comb. Sci. Tech. 83:33 (1992).

    Google Scholar 

  21. Libby, P. A. and Williams, F. A. Comb. Sci. Tech. 37:221 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John Buckmaster Tadao Takeno

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Chao, B.H., Egolfopoulos, F.N. (1995). Determination of laminar flame speeds from nozzle-generated counterflow flames. In: Buckmaster, J., Takeno, T. (eds) Modeling in Combustion Science. Lecture Notes in Physics, vol 449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59224-5_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-59224-5_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59224-2

  • Online ISBN: 978-3-540-49226-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics