Skip to main content

Variability of anomalous transport exponents versus different physical situations in geophysical and laboratory turbulence

  • Part 1: Lévy Flights in Fluids
  • Conference paper
  • First Online:
Lévy Flights and Related Topics in Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 450))

Abstract

Geophysical turbulent flows are characterized by large Reynolds numbers. Therefore, it has been a common expectation that universal relations (such as energy spectrum E(k) ∼ k −5/3, passive scalar spectrum E c (k) ∼ k −5/3,diffusivity K ∼ ℓ 4/3 should be valid in such flows as well as their “two-dimensional” analogs in quasi-two-dimensional situations.

We present an overview of results of observations in the atmosphere, ocean and laboratory (including those used by Richardson in his famous paper in 1926) which can be interpreted in terms of anomalous diffusion of passive scalar in turbulent flows, i.e. not obeying the above universal relations.

One of the natural candidates among the possible reasons for the deviations from the Richardson law is the phenomenon of spontaneous breaking of statistical isotropy (rotational and/or reflectional) symmetry, locally or globally.

An attempt is made to provide a quantitative explanation of anomalous diffusion in terms of this phenomenon.

Some of the results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsinober A., Kit E. and Dracos T. 1992 Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, 169–192.

    Google Scholar 

  2. Kit E., Tsinober A. & Dracos T. 1993 Velocity gradients in a turbulent jet flow, in Proceedings of the 4th European Conference on Turbulence, ed. F.T.M. Nieuwstadt (Kluwer), Appl. Sci. Res., 51, 185–190.

    Google Scholar 

  3. Richardson L. F. 1926 Atmospheric diffusion on a distance-neighbor graph, Proc. Roy. Soc. London, A110, 709–737.

    Google Scholar 

  4. Taylor G. I. 1959 The present position in the theory of turbulent diffusion, In Atmospheric Diffusion and Air Pollution, ededs.} F. N. Frenkiel and P. A. Sheppard, pp. 101–112, Academic Press, New York London.

    Google Scholar 

  5. Contrary to the velocity field experimental results for passive scalars are significantly different from ‘theoretical’ predictions. Among the reasons for such ‘misbehavior’ of passive scalars in turbulent flows is the fact that the passive scalar carries the signature (at least in part) of the complex structure of the turbulent velocity field and that even in a purely laminar flow the passive scalar can behave in a turbulent manner (Lagrangian chaos). For an overview and a partial list of references on ‘misbehavior’ of a passive scalar in turbulent flows see [45] and Holzer M. and Siggia E. 1994 Turbulent mixing of a passive scalar, Phys. Fluids, 6, 1820–1837.

    Google Scholar 

  6. Zaslavsky G. M. 1992 Anomalous transport and fractal kinetics, In Topological Aspects of the Dynamics of Fluids and Plasmas, eds. H. K. Moffatt, G. M. Zaslavsky, P. Compte and M. Tabor, pp. 481–491, Kluwer, Dordrecht/Boston/London.

    Google Scholar 

  7. Monin A. S. & Yaglom A. M. 1971 & 1975 Statistical fluid mechanics, vol. 1 & vol 2. MIT Press, Cambridge.

    Google Scholar 

  8. Monin A. S. and Ozmidov R. V. 1985 Turbulence in the ocean, Reidel, Dordrecht.

    Google Scholar 

  9. Hentschel H. G. E. and Procaccia I. 1983 Fractal nature of turbulence as manifested in turbulent diffusion, Phys. Rev., A27, 1266–1269. These authors have reanalized the data on turbulent diffusion of smoke puffs compiled by Gifford (F. Gifford, Jr. 1957 J. Meteor., 24, 410–414). They found that the dependence of ℓ(t) is better approximated by the relation ℓ2t 3+θ with 0.45 > θ > 0.15 which corresponds to the exponent for K in the range 1.42 ÷ 1.37.

    Google Scholar 

  10. Bouchard J.-P. and Georges A. 1990 Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195, 127–293.

    Google Scholar 

  11. Schlesinger M. F., Klafter J. and West B. J. 1986 Lévy walks with applications to turbulence and chaos, Physica, 140A, 212–218.

    Google Scholar 

  12. Schlesinger M. F., Klafter J. and West B. J. 1987 Lévy dynamics of enhanced diffusion: application to turbulence Phys. Rev. Lett., 58, 1100–1103.

    Google Scholar 

  13. Kuzmin G. A. 1983 Ideal incompressible hydrodynamics in terms of vortex momentum density, Phys. Lett., A96, 88–90.

    Google Scholar 

  14. Oseledets V. I. 1988 On a new way of writing the Navier-Stokes equation. The Hamiltonian formalism, Comm. Mosc. Math. Soc., 44, 210–211.

    Google Scholar 

  15. Moffatt H. K. 1983 Transport effects associated with turbulence with particular attention to the influence of helicity, Rep. Prog. Phys., 46, 621–664.

    Google Scholar 

  16. Drummond I. T., Duane S. and Horgan R. R. 1984 Scalar diffusion in simulated helical turbulence with molecular diffusivity, J. Fluid Mech., 138, 75–91.

    Google Scholar 

  17. Cattaneo F., Hughes D. W. and Proctor M. R. E. 1988 Mean advection effects in turbulence, Geophys. Astrophys. Fluid Dyn., 41, 335–342.

    Google Scholar 

  18. Chechkin A. V., Tur A. V. and Yanovsky V. V. 1993 Transport of passive admixture in helical turbulent medium, In: Proc. Int. Conf. Physics in Ukraine, Kiev, 22–27 June 1993, pp.50–53; also Physica, A, submitted.

    Google Scholar 

  19. Borgas M. S. 1993 The multifractal lagrangian nature of turbulence, Phil. Trans. R. Soc. Lond., 342, 379–411. Borgas M. and Sawford B. L. 1994 Stochastic equations with multifractal random increments for modeling turbulent dispersion, Phys. Fluids, 6, 618–633.

    Google Scholar 

  20. Tur A. and Levich E. 1992 The origin of organized motion, Fluid Dyn. Res., 10, 75–90.

    Google Scholar 

  21. Bershadskii A., Kit E., Tsinober A. & Waisburd, H. 1994 Strongly localized events of energy, dissipation, enstrophy and enstrophy generation in turbulent flows, IMA Conference on Multiscale Stochastic Processes Analysed Using Multifractals and Wavelets, Cambridge, 29–31 March 1993; Fluid Dyn. Res., 14, (August 1994, in press).

    Google Scholar 

  22. Bershadskii A., Kit E. and Tsinober, A. 1993 Self-organization and fractal dynamics in turbulence, Physica, A 199, 453–475.

    Google Scholar 

  23. Bershadskii A., Kit E. and Tsinober A. 1993 Spontaneous breaking of reflectional symmetry in real quasi-two-dimensional turbulence on traveling waves and solitons, Proc. Roy. Soc. A 441, 147–155

    Google Scholar 

  24. Meneveau C. 1991 Analysis of turbulence in the orthonormal wavelet representation, J.Fluid.Mech., 232 (1991), 469–520.

    Google Scholar 

  25. Hosokawa I. 1993 Private communication on unpublished results on generalized dimension D q of the field u 2 from direct numerical simulations of Navier-Stokes Equations, see Hosokawa I. and Yamamoto K. 1989 Fine structure of a directly simulated turbulence. J. Phys. Soc. Japan 58, 20–23.

    Google Scholar 

  26. Pasquill F. & Smith F. B. 1983 Atmospheric Diffusion. Study of the dispersion of windborne material from industrial and other sources. Ellis Horwood.

    Google Scholar 

  27. Bershadskii A. and Tsinober A. 1993 On the influence of organized structures on turbulent diffusion in the ABL: final stage, Bound. Layer Met., submitted.

    Google Scholar 

  28. Högström V.: 1964 An experimental study of atmospheric diffusion, Tellus, 16, 205–251.

    Google Scholar 

  29. Cramer H.E., Record F.A. and Vangan H.C.: 1958 The study of the diffusion of gases in the lower atmosphere, MIT Dep. Meteorology, Final Report No.AF 19(604) — 1058.

    Google Scholar 

  30. Gifford F. A. 1983 Atmospheric diffusion in the mesoscale range: the evidence of recent plume width observations, Sixth symposium on turbulence and diffusion, Boston, USA, 1983, pp. 300–304.

    Google Scholar 

  31. Okubo A. 1971 Oceanic diffusion diagrams, Deep-Sea Research, 18, 789–806.

    Google Scholar 

  32. Alexander S. 1986 Fractons, Physica, 140A, 397–404.

    Google Scholar 

  33. Pierrehumbert R.T. 1986 Universal short-wave instability of twodimensional eddies in an inviscid fluid, Phys. Rev. Leit., 57, 2157–2159.

    Google Scholar 

  34. Waleffe F. 1990 On the three-dimensional instability of strained vortices, Phys. Fluids, A2, 76–80.

    Google Scholar 

  35. Brissaud A., Frisch U., Leorat J., Lesieur M. and Mazure A. 1973 Helicity cascades in fully developed isotropic turbulence. Phys. Fluids, 16, 1366–1368.

    Google Scholar 

  36. Moffatt H. K. and Tsinober A. 1992 Helicity in laminar and turbulent flows, Annu. Rev. Fluid Mech., 24, 281–312.

    Google Scholar 

  37. Vinichenko N. K. and Dutton J. A. 1969 Empirical studies of atmospheric structure and spectra in the free atmosphere, Radio Sci., 4, 1115–1126.

    Google Scholar 

  38. Gage K.S. and Nastrom G.D. 1986a Theoretical interpretation of atmospheric wavenumber spectra at wind and temperature observed by commercial aircraft during GASP., J. Atm. Sci., 43, 729–740.

    Google Scholar 

  39. Gage K.S. and Nastrom G. D. 1986b Spectrum of atmospheric vertical displacements and spectrum of conservative scalar passive additives due to quasi-horizontal atmospheric motions, J. Geophys. Res., D91, 13211–13216.

    Google Scholar 

  40. Pao Y.-H. and Goldburg A., eds. 1969 Clear Air Turbulence and its detection, Plenum, New York; see papers by G.K. Mather and by R. T. H. Collis, R. M. Endlich & R. L. Mancuso.

    Google Scholar 

  41. Monin & Ozmidov 1985 [8], p. 218 make the following statement: In most cases, however, large-scale turbulence in the ocean seem to be not purely three-or two-dimensional, but intermediate between the two. To verify this statement we calculated the slopes of 47 spectra of large-scale velocity fluctuations reported by the Woods Hole Oceanographic Institute (1965, 1966, 1967, 1970, 1971, 1974, 1975). At frequencies from about 5 to 0.005 cycleh −1 the mean slope of the spectra prove to be-2.11. The slope ranged from-1.87 to-2.70. As usual, the spectra analyzed have pronounced peaks at the inertial and tidal periods. When estimated separately, the slopes of the spectra at frequencies above and below the inertial and tidal ones had slightly differing values:-2.34 in the former case and-1.92 in the latter.

    Google Scholar 

  42. Caughey S. J. 1977 Boundary layer turbulence spectra in stable conditions, Boundary Layer Meteorology, 11, 3–14.

    Google Scholar 

  43. Caughey S. J. and Palmer S. G. 1979 Some aspects of turbulence structure through the depth of the convective boundary layer, Quart. J. Roy. Met. Soc., 105, 811–827.

    Google Scholar 

  44. Gage K.S. and Nastrom G. D. 1986c Horizontal spectra of atmospheric traces measured during the global atmospheric sampling program, J. Geophys. Res., D91, 13201–13209.

    Google Scholar 

  45. Sreenivasan K. R. 1991 On local isotropy of passive scalars in turbulent shear flows, Proc. Roy. Soc., A434, 165–182.

    Google Scholar 

  46. Prasad, R. R. and Sreenivasan, K. R. 1990 The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows, Phys. Fluids, A2, 792–807.

    Google Scholar 

  47. Jaesh, Tong C. and Warhaft Z. 1994 On temperature spectra in grid turbulence, Phys. Fluids, 6, 306–312.

    Google Scholar 

  48. Warhaft Z. and Lumley J. L. 1978 An experimental of the decay of temperature fluctuations in grid-generated turbulence, J. Fluid Mech., 88, 659–688.

    Google Scholar 

  49. Branover H., Bershadskii A., Eidelman A. and Nagorny M. 1993 Possibility of simulating geophysical flow phenomena by laboratory experiments, Bound. Layer Met., 62, 117–128.

    Google Scholar 

  50. Morel P. and Larcheveque M. 1974 Relative dispersion of constant-level balloons in the 200-mb general circulation. J. Atm. Sci., 31, 2189–2196.

    Google Scholar 

  51. Mory M. and Hopfinger E.J. 1986 Structure functions in a rotationally dominated turbulent flow, Phys. Fluids, 29, 2140–2146.

    Google Scholar 

  52. Olson F. C. W. and Ichie T. 1959 Horizontal diffusion, Science, 130, No. 3384. 1255.

    Google Scholar 

  53. Corrsin S. 1959 Outline of some topics in homogeneous turbulent flow, J. Geophys. Res., 64, 2134–2150.

    Google Scholar 

  54. Lovejoy S. 1982 Area-Perimeter Relation for Rain and Cloud Areas, Science, 216, 185–187.

    Google Scholar 

  55. Townsend A. A. 1966 The mechanism of entrainment in free turbulent flows, J. Fluid Mechanics, 26, 689–715.

    Google Scholar 

  56. Mandelbrot B.B. 1982 The Fractal geometry of Nature, p.110, Freeman.

    Google Scholar 

  57. Gifford F. A. 1989 The shape of large tropospheric clouds, or “very like a whale”, Bull. Amer. Met. Soc., 70, 468–475.

    Google Scholar 

  58. Gibson C. H. and Masiello P. J. 1972 Observations of the variability of dissipation rates of turbulent velocity and temperature fields, in Statistical Models and Turbulence, 431 ( ed. M. Rosenblatt and C. Van Atta, Springer, 1972).

    Google Scholar 

  59. Sreenivasan K. R., Antonia R. A. and Danh H. Q. 1977 Temperature dissipation fluctuations in a turbulent boundary layer, Phys. Fluids, 20, 1238–1247.

    Google Scholar 

  60. Bershadskii A. and Tsinober A. 1993 On differences in fractal properties of rate of dissipation of energy and passive scalar and their surrogates, submitted.

    Google Scholar 

  61. Stiassnie M., Hadad V. and Poreh M. 1993 Simulation of turbulent dispersion, submitted to J. Fluid Mech..

    Google Scholar 

  62. Bar'yakhtar V. G., Gonchar V. Yu. and Yanovsky V. V. 1993 Origin of the fractal structure of the Chernobyl spot of the radionuclides contamination, Ann. Geophys., Suppl.II to vol. 11, C306.

    Google Scholar 

  63. Kadanoff L. P. 1990 Scaling and structures in the hard turbulence region of Rayleigh-Bénard convection. In New Perspectives in Turbulence, ed. L.Sirovich, p. 265.

    Google Scholar 

  64. Normal R. E. 1993 Strange spatio-temporal patterns, self-organized universal crises and politico-dynamics via symmetric chaos, neutral networks and the fractal wavelet transform of the magic of names. Nonlinear Science Today, 3, 13–14.

    Google Scholar 

  65. Bradshaw P. 1994 Turbulence: the chief outstanding difficulty of our subject, Experiments in fluids, 16,203–216.

    Google Scholar 

  66. Ozmidov R. V., Astok V. K., Gezentsvey A. N. and Yukhat M. K. 1971, Statistical characteristics of the concentration field of a passive impurity introduced into the sea, Aimosph. Ocean. Phys., 7, 636–641.

    Google Scholar 

  67. Monin A. S. and Ozmidov R. V. 1978 Turbulence in the ocean. In Ocean Physics, I, 148–207, Nauka, Moscow (in Russian)

    Google Scholar 

  68. Falkovich G. E. and Medvedev S. B. 1992 Kolmogorov-like spectrum for turbulence of inertial-gravity waves, Europhys. Lett., 19, 298–284.

    Google Scholar 

  69. Falkovich G. 1992 Inverse cascade and wave condensate in mesoscale atmospheric turbulence, Phys. Rev. Lett., 69, 3173–3176.

    Google Scholar 

  70. Mahalov, A. 1993 Private communication..

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Micheal F. Shlesinger George M. Zaslavsky Uriel Frisch

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Tsinober, A. (1992). Variability of anomalous transport exponents versus different physical situations in geophysical and laboratory turbulence. In: Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds) Lévy Flights and Related Topics in Physics. Lecture Notes in Physics, vol 450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59222-9_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-59222-9_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59222-8

  • Online ISBN: 978-3-540-49225-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics