Skip to main content

On the complexity of computing the greatest common divisor of several univariate polynomials

  • Conference paper
  • First Online:
Book cover LATIN '95: Theoretical Informatics (LATIN 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 911))

Included in the following conference series:

Abstract

This paper is devoted to present a deterministic algorithm computing the greatest common divisor of several univariate polynomials with coefficients in an integral domain with the best known complexity bound when integer coefficients are considered. More precisely, if n is a bound for the degree of the t+1 integer polynomials whose greatest common divisor is to be computed and M is a bound for the size of those polynomials then such greatest common divisor is computed by means of O(tn 3) arithmetic operations involving integers whose size is in O(n 4 M) (which is independent of t).

Partially supported by CICyT PB 89/0379/C02/01 (Geometría Real y Algoritmos), Esprit/Bra 6846 (PoSSo) and Caja Cantabria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. G. Akritas: Elements of Computer Algebra with Applications. Wiley-Interscience (1989).

    Google Scholar 

  2. S. Berkowitz: On computing the determinant in small parallel time with a small number of processors. Information Processing Letters, 18 (1984).

    Google Scholar 

  3. W. S. Brown and J. F. Traub: On Euclid's algorithm and the theory of subresultants. Journal of Association for Computing Machinery, 118, 505–514 (1971).

    Google Scholar 

  4. S. Barnett: Polynomials and Linear Control Systems. Marcel Dekker, Inc.

    Google Scholar 

  5. S. Barnett: Greatest common divisor of several polynomials. Proc. Cambridge Philos. Soc., 70, 263–268 (1971).

    Google Scholar 

  6. S. Barnett: Degrees of greatest common divisors of invariant factors of two regular polynomial matrices. Proc. Camb. Phil. Soc., 66, 241–245 (1970).

    Google Scholar 

  7. G. E. Collins: Subresultants and reduced polynomial remainder sequences. Journal of Association for Computing Machinery, 14, 128–142 (1967).

    Google Scholar 

  8. J. von zur Gathen: Parallel algorithms for algebraic problems. Siam Journal on Computing, 13, 4, 802–824 (1984).

    Google Scholar 

  9. L. González-Vega, H. Lombardi, T. Recio and M.-F. Roy: Specialisation de la suite de Sturm et sous-resultants. Informatique Theorique et Applications, 24, 6, 561–588 (1990).

    Google Scholar 

  10. L. González-Vega: An elementary proof of Barnett's Theorem about the greatest common divisor of several univariate polynomials. Submitted to Linear Algebra and Applications (1994).

    Google Scholar 

  11. V. W. Habicht: Eine Verallgemeinerung des Sturmschen Wurzelzahlverfahrens. Comm. Math. Helvetici, 21, 99–116 (1948).

    Google Scholar 

  12. C. Ho: Topics in Algebraic Computing: Subresultants, GCD, factoring, and primary ideal decomposition. Ph. D. Thesis. Courant Institute of Mathematical Sciences. New York (1989).

    Google Scholar 

  13. D. Ierardi and D. Kozen: Parallel resultant computation. Synthesis of Parallel Algorithms, ed. J. Reif, Morgan Kaufmann. Also technical report 90-1987, Department of Computer Science, Cornell University (1990).

    Google Scholar 

  14. R. E. Kalman. Some computational problems and méthods related to invariant factors and control theory. Computational Problems in Abstract Algebra, ed. J. Leech, Pergamon Press, 393–398 (1970).

    Google Scholar 

  15. D. Knuth: The art of computer programming II: Seminumerical Algorithms. Reading Mass., first edition 1969, second edition 1982.

    Google Scholar 

  16. J. LLovet and J. R. Sendra: An Extended Polynomial GCD Algorithm using Hankel Matrices. Journal of Symbolic Computation, 13(1), 25–39 (1992).

    Google Scholar 

  17. H. Lombardi: Algebre Élémentaire en temps polynomial. Ph. D. Thesis. University of Nice (1989).

    Google Scholar 

  18. R. Loos: Generalized polynomial remainder sequences. Computer Algebra, Computing Suplementum 4, Springer Verlag, 115–138 (1982).

    Google Scholar 

  19. C. C. MacDuffee: Some applications of matrices in the theory of equations. American Mathematical Monthly, 57, 154–161 (1950).

    Google Scholar 

  20. M. Mignotte: Mathematics for Computer Algebra. Springer-Verlag (1992).

    Google Scholar 

  21. M. Mignotte: Some useful bounds. Computer Algebra, ed. B. Buchberger, G.E. Collins and R. Loos, pag. 259–263. Computing Suplementum 4, Springer Verlag, NY (1982).

    Google Scholar 

  22. K. Mulmuley: A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica, 7(1), 101–104 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ricardo Baeza-Yates Eric Goles Patricio V. Poblete

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González-Vega, L. (1995). On the complexity of computing the greatest common divisor of several univariate polynomials. In: Baeza-Yates, R., Goles, E., Poblete, P.V. (eds) LATIN '95: Theoretical Informatics. LATIN 1995. Lecture Notes in Computer Science, vol 911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59175-3_100

Download citation

  • DOI: https://doi.org/10.1007/3-540-59175-3_100

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59175-7

  • Online ISBN: 978-3-540-49220-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics