Skip to main content

E10 for beginners

  • Conference paper
  • First Online:
Strings and Symmetries

Part of the book series: Lecture Notes in Physics ((LNP,volume 447))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Borcherds. Vertex algebras, Kac-Moody algebras, and the monster. Proceedings of the National Academic Society USA, 83:3068–3071,1986.

    Google Scholar 

  2. R. E. Borcherds. Generalized Kac-Moody algebras. Journal of Algebra,115:501–512,1988.

    Google Scholar 

  3. R. E. Borcherds. The monster Lie algebra. Advances in Mathematics, 83:30–47, 1990.

    Google Scholar 

  4. R. C. Brower. Spectrum-generating algebra and no-ghost theorem for the dual model. Physical Review, D6:1655–1662,1972.

    Google Scholar 

  5. J. H. Conway. The automorphism group of the 26-dimensional even unimodular Lorentzian lattice. Journal of Algebra, 80:159–163, 1983.

    Google Scholar 

  6. E. Del Giudice, P Di Vecchia, and S. Fubini. General properties of the dual resonance model. Annals of Physics, 70:378–398,1972.

    Google Scholar 

  7. A. J. Feingold and I. B. Frenkel. A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2. Mathernatische Annalen, 263:87–144,1983.

    Google Scholar 

  8. I. B. Frenkel. Representations of Kac-Moody algebras and dual resonance models. In Applications of Group Theory in Theoretical Physics, pages 325–353, American Mathematical Society, Providence, 1985. Lect. Appl. Math., Vol. 21.

    Google Scholar 

  9. I. B. Frenkel and V. G. Kac. Basic representations of affine Lie algebras and dual models. Inventiones Mathematicae, 62:23–66,1980.

    Google Scholar 

  10. I. B. Frenkel, J. Lepowsky, and A. Meurtan. Vertex Operator Algebras and the Monster. Pure and Applied Mathematics Volume 134, Academic Press, San Diego, 1988.

    Google Scholar 

  11. R. W. Gebert. Introduction to vertex algebras, Borcherds algebras, and the monster Lie algebra. International Journal of Modern Physics, A8:5441–5503, 1993.

    Google Scholar 

  12. R.W. Gebert and H. Nicolai. On E 10 and the DDF construction, to appear m Communications in Mathematical Physics.

    Google Scholar 

  13. P Goddard, A. Kent, and D. Olive. Virasoro algebras and coset space models. Physics Letters, 152 B:88–92,1985

    Google Scholar 

  14. P Goddard and D. Olive. Algebras, lattices and strings. In J. Lepowsky, S. Mandelstam, and I. M. Singer, editors, Vertex Operators in Mathematics and Physics-Proceedings of a Conference November 10-17, 1983, pages 51–96, Springer, New York, 1985. Publications of the Mathematical Sciences Research Institute #3.

    Google Scholar 

  15. P. Goddard and D. Olive. Kac-Moodyand Virasoro algebras in relation to quantum physics. International Journal of Modern Physics, A 1:303–414,1986.

    Google Scholar 

  16. M. B. Green, J. H. Schwarz, and E. Witten. Superstring Theory Vol. 1&2. Cambridge University Press, 1988.

    Google Scholar 

  17. D. J. Gross. High-energy symmetries of string theory. Physical Review Letters, 60:1229–1232,1988.

    Google Scholar 

  18. C. M. Hull, and P K. Townsend. Unity of Superstring Dualities. preprint QMW-94-30, R/94/33, 1994.

    Google Scholar 

  19. B. Julia. in: Superspace and Supergravity, eds. S. W. Hawking and M. Rocek Cambridge University Press, 1981: Lectures in Applied Mathematics, 21: 355–373,1985.

    Google Scholar 

  20. B. Julia and H. Nicolai. Null-Killing Vector Dimensional Reduction and Galilean preprint LPTENS 94/21, DESY 94-156,1994.

    Google Scholar 

  21. V. G. Kac. Infinite dimensional Lie algebras. Cambridge University Press, Cambridge, third edition, 1990.

    Google Scholar 

  22. V. G. Kac, R. V. Moody, and M. Wakimoto. On E 10. In K. Bleuler and M. Werner editors, Differential geometrical methods in theoretical physics. Proceedings, NATO advanced research workshop, 16th international conference, Como, pages 109–128, Kluwer, 1988.

    Google Scholar 

  23. S. Kass, R. V. Moody, J. Patera, and R. Slansky. Affine Lie Algebras, Weight Multiplicities, andBranching Rules, Volume 1& 2. University of California Press, Berkeley, 1990.

    Google Scholar 

  24. G. Moore. Finite in all directions. preprint HEP-TH/9305139, YCTP-P12-93, Yale University, New Haven,1993.

    Google Scholar 

  25. H. Nicolai. Physics Letters, B276:333–340,1992

    Google Scholar 

  26. J. Scherk. An introduction to the theory of dual models and strings. Reviews of Modern Physics, 47:123–164,1975.

    Google Scholar 

  27. J. Serre. A Course in Arithmetics. Springer, New York, 1973.

    Google Scholar 

  28. P C. West. Physical States and String Symmetries. preprint HEP-TH/9411029, KCL-TH-94-19, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R.W. Gebert or H. Nicolai .

Editor information

Gülen Aktaş Cihan Saçlioğlu Meral Serdaroğlu

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Gebert, R., Nicolai, H. (1995). E10 for beginners. In: Aktaş, G., Saçlioğlu, C., Serdaroğlu, M. (eds) Strings and Symmetries. Lecture Notes in Physics, vol 447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59163-X_269

Download citation

  • DOI: https://doi.org/10.1007/3-540-59163-X_269

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59163-4

  • Online ISBN: 978-3-540-49204-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics