Skip to main content

Theory of glass transition in spin glasses, orientational glasses and structural glasses

  • Conference paper
  • First Online:
25 Years of Non-Equilibrium Statistical Mechanics

Part of the book series: Lecture Notes in Physics ((LNP,volume 445))

  • 337 Accesses

Abstract

Theoretical concepts about the glass transition are briefly reviewed, and the test of these ideas by Monte Carlo simulations of simple lattice models is described, with an emphasis on isotropic and anisotropic orientational glasses, and the bond fluctuation model of polymer melts. It is suggested that orientational glasses do have an equilibrium phase transition at zero temperature (in d = 3 dimensions!) only, in contrast to the Ising spin glass which orders at nonzero temperature. A diverging glass correlation length is identified that is responsible for the anomalous slowing down. For the Potts glass, the divergence seems to be exponential, implying that the model is at its lower critical dimensionality.

Choosing a Hamiltonian that prefers a long bond of the bond fluctuation model of polymer chains, the resulting “geometric frustration” in systems of densely packed chains leads to a glassy freeze-in, surprisingly similar to experiment. Expectations of various theories are qualitatively verified. It is suggested that also in this model a diverging length can be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zallen, R.: The Physics of Amorphous Solids (Wiley, New York 1983)

    Google Scholar 

  2. Zarzycki, J. (ed): Materials Science and Technoloy, Vol. 9 (VCH Pub., Weinheim 1991)

    Google Scholar 

  3. Jäckle, J.: Rep. Progr. Phys. 49, 171 (1986)

    Google Scholar 

  4. Hansen, J.P., Levesque, D. and Zinn-Justin S. (eds.): Liquids, Freezing and the Glass Transition (North-Holland, Amsterdam 1991)

    Google Scholar 

  5. Binder, K. and Young, A.P.: Rev. Mod. Phys. 58, 801 (1986)

    Google Scholar 

  6. Dasgupta, C., Indrani, A.V., Ramaswamy, S. and Phani, M.K.: Europhys. Lett. 15, 307 (1991)

    Google Scholar 

  7. Ernst, R.M., Nagel, S.R. and Grest, G.S.: Phys. Rev. B43, 8070 (1991)

    Google Scholar 

  8. Donth, E.: J. Non-Cryst. Sol. 53, 325 (1982)

    Google Scholar 

  9. Fischer, E.W., Donth, E. and Steffen W.: Phys. Rev. Lett. 68, 2344 (1992)

    Google Scholar 

  10. Gibbs, J.H. and Di Marzio, E.: J. Chem. Phys. 28, 373, 807 (1958)

    Google Scholar 

  11. Adam, G. and Gibbs, J.H.: J. Chem. Phys. 43, 139 (1965)

    Google Scholar 

  12. Kauzmann, W.: Chem. Rev. 43, 219 (1948)

    Google Scholar 

  13. Vogel H.: Phys. Z. 22, 1921; Fulcher, G.S.: J. Am. Ceram. Soc. 8, 339 (1925)

    Google Scholar 

  14. Kohlrausch, R.: Ann. Phys. (Leipzig) 12, 393 (1847)

    Google Scholar 

  15. Grest, G.S. and Cohen, M.H. in: Advances in Chemical Physics (Prigogyne, I., and Rice, S.A., eds.) (Wiley, New York 1981)

    Google Scholar 

  16. Götze, W. and Sjogren, L.: Rep. Progr. Phys. 55, 241 (1992)

    Google Scholar 

  17. Götze, W.: Z. Physik Z. Physik, B56 139 1984; Leutheusser, E.: Phys. Rev. A29, 2765 (1984)

    Google Scholar 

  18. Fuchs, M., Götze, W., Hildebrand, S. and Latz, A.: J. Phys.: Condens. Matter 4, 7709 (1992)

    Google Scholar 

  19. Binder, K. and Reger, J.D.: Adv. Phys. 41, 547 (1992)

    Google Scholar 

  20. Binder, K.: Macromol. Chem., Macromol. Symp. 50, 1 (1991)

    Google Scholar 

  21. Hohenberg, P.C. and Halperin, B.I.: Rev. Mod. Phys. 49, 435 (1977)

    Google Scholar 

  22. Fisher, M.E.: Rev. Mod. Phys. 46, 597 (1974)

    Google Scholar 

  23. Carmesin, I. and Kremer, K.: Macromol. 21, 2819 (1188)

    Google Scholar 

  24. Wittmann, H.P. and Kremer, K.: Computer Phys. Commun. 61, 309 (1990)

    Google Scholar 

  25. Deutsch, H.P., and Binder, K.: J. Chem. Phys. 94, 2294 (1991)

    Google Scholar 

  26. Wittmann, H.P., Kremer, K. and Binder, K.: J. Chem. Phys. 96, 6291 (1992)

    Google Scholar 

  27. Wittmann, H.P., Kremer, K. and Binder, K.: Makromol. Chem., Theory & Simul. 1, 275 (1992)

    Google Scholar 

  28. Baschnaagel, J., Binder, K. and Wittmann, H.P.: J. Phys. Condens. Matter 5, 1597 (1993)

    Google Scholar 

  29. Ray, P., Baschnagel, J. and Binder, K.: J. Phys.: Condens. Matter 5, 5731 (1993)

    Google Scholar 

  30. Baschnagel, J. and Binder, K.: Physica A204, 47 (1994)

    Google Scholar 

  31. Lobe, B., Baschnagel, J. and Binder, K.: Macromol. (1994, in press)

    Google Scholar 

  32. Ray, P. and Binder, K.: Europhys. Lett. (1994, in press)

    Google Scholar 

  33. Baschnagel, J.: Phys. Rev. 1349, 135 (1994)

    Google Scholar 

  34. Baschnagel, J. and Fuchs, M.: preprint

    Google Scholar 

  35. Andrejew, E., Baschnagel, J. and Binder, K.: in preparation

    Google Scholar 

  36. Höchli, U.T., Knorr, K. and Loidl, A.: Adv. Phys. 39, 405 (1990)

    Google Scholar 

  37. Maletta, H. and Convert, P.: Phys. Rev. Lett. 42, 108 (1979)

    Google Scholar 

  38. Sullivan, N.S.: AIP Conf. Proc. 103, 121 (1983)

    Google Scholar 

  39. Carmesin, H.O. and Binder K.: Z. Physik B58, 375 (1987); Europhys. Lett. 4, 269 (1987)

    Google Scholar 

  40. Hammes, D., Carmesin, H.O. and Binder, K.: Z. Physik B76, 115 (1989)

    Google Scholar 

  41. Goldbart, P. and Sherrington, D.: J. Phys. C18, 1923 (1985)

    Google Scholar 

  42. Elderfield, D.J. and Sherrington, D.: J. Phys. C16, L497, L971, L1169 (1983); Elderfield, DT: J. Phys. A17, L517 (1984)

    Google Scholar 

  43. Gross, D.J., Kanter, H. and Sompolinsky, H.: Phys. Rev. Lett. 55, 305 (1985)

    Google Scholar 

  44. Carmesin, H.O. and Binder, K.: J. Phys. A21, 4035 (1988)

    Google Scholar 

  45. Scheucher, M., Reger, J.D., Binder, K. and Young, A.P.: Phys. Rev. B42, 6881 (1990)

    Google Scholar 

  46. Cwilich, G.: J. Phys. A23, 5029 (1990); Cwilich, G. and Kirkpatrick, T.R.: J. Phys. A22, 4971 (1989)

    Google Scholar 

  47. Scheucher, M. and Reger, J.D.: Phys. Rev. B45, 2499 (1922)

    Google Scholar 

  48. Scheucher, M., Reger, J.D., Binder, K. and Young, A.P.: Europhys. Lett. 14, 119 (1991); 20, 343 (1992)

    Google Scholar 

  49. Scheucher, M. and Reger, J.D.: Z. Physik B91, 383 (1993)

    Google Scholar 

  50. McMillan, W.L.: J. Phys. C17, 3179 (1984)

    Google Scholar 

  51. Vollmayr, K., Schreider, G., Reger, J.D. and Binder, K.: J. Noncryst. Solids (1994, in press)

    Google Scholar 

  52. Haas, F., Vollmayr, K. and Binder, K.: in preparation

    Google Scholar 

  53. Hessinger, J. and Knorr, K.: Ferroelectrics 29, 127 (1992)

    Google Scholar 

  54. Michel, K.H.: Phys. Rev. B35, 1405, 1414 (1987); Z. Physik B68, 259 (1987)

    Google Scholar 

  55. Nattermann, T. and Villain, J.: Physe Transitions 11, 5 (1988)

    Google Scholar 

  56. Bässler, H.: Phys. Rev. Lett. 58, 767 (1987)

    Google Scholar 

  57. Keddie, J.L., Jones, R.A.L. and Cory, R.A.: preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. J. Brey J. Marro J. M. Rubí M. San Miguel

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verglag

About this paper

Cite this paper

Binder, K. (1995). Theory of glass transition in spin glasses, orientational glasses and structural glasses. In: Brey, J.J., Marro, J., Rubí, J.M., San Miguel, M. (eds) 25 Years of Non-Equilibrium Statistical Mechanics. Lecture Notes in Physics, vol 445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59158-3_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-59158-3_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59158-0

  • Online ISBN: 978-3-540-49203-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics