Skip to main content

Simulation of the consistent Boltzmann equation for hard spheres and its extension to higher densities

  • Conference paper
  • First Online:
  • 332 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 445))

Abstract

The direct simulation Monte Carlo method is modified with a post-collision displacements in order to obtain the hard sphere equation of state. This leads to consistent thermodynamic and transport properties in the low density regime. At higher densities, when the enhanced collision rate according to kinetic theory is introduced, the exact hard sphere equation of state is recovered, and the transport coefficients are comparable to those of the Enskog theory. The computational advantages of this scheme over hard sphere molecular dynamics are that it is significantly faster at low and moderate densities and that it is readily parallelizable.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).

    Google Scholar 

  2. A. L. Garcia, Numerical Methods for Physics, Chapter 10 (Prentice Hall, Englewood Cliffs NJ, 1994).

    Google Scholar 

  3. W. Wagner, J. Stat. Phys. 66, 1011 (1992).

    Google Scholar 

  4. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, (Clarendon, Oxford, 1987).

    Google Scholar 

  5. Modified collision rates are commonly used in DSMC to reproduce the transport properties of non-hard sphere gases e.g., the Maxwell molecule and Bird's variable hard sphere model [1]. However, these modifications retain the ideal gas equation of state. See also F. Baras, M. Malek Mansour and A.L. Garcia, Phys. Rev. E 49 3512 (1994).

    Google Scholar 

  6. M. A. Fallavollita, D. Baganoff, and J. D. McDonald J. Comp. Phys. 109 30 (1993).

    Google Scholar 

  7. E.P. Muntz, Ann. Rev. Fluid Mech. 21 387 (1989).

    Google Scholar 

  8. D. A. Erwin, G. C. Pham-Van-Diep and E. P. Muntz, Phys. Fluids A 3 697 (1991).

    Google Scholar 

  9. D. C. Wadsworth, Phys. Fluids A 5, 1831 (1993).

    Google Scholar 

  10. D. L. Morris, L. Hannon and A. L. Garcia, Phys. Rev. A 46, 5279 (1992).

    Google Scholar 

  11. E. Salomons and M. Mareschal, Phys. Rev. Lett. 69, 269 (1992).

    Google Scholar 

  12. M. Malek Mansour, A. L. Garcia, G. C. Lie and E. Clementi, Phys. Rev. Lett. 58, 874 (1987).

    Google Scholar 

  13. S. M. Dunn and J. B. Anderson J. Chem. Phys., 99 6607 (1993).

    Google Scholar 

  14. M. M. Mansour and F. Baras Physica A, 188 253 (1992).

    Google Scholar 

  15. F. J. Alexander, A. L. Garcia and B. J. Alder Phys. Fluids (to appear) (1994).

    Google Scholar 

  16. Moving to contact, each point particle travels an extra distance σ/2 (as compared with hard rods). Moving apart after the collision, each point particle must also travel an additional distance σ/2.

    Google Scholar 

  17. P. Resibois and M. De Leener, Classical Kinetic Theory of Fluids, (John Wiley and Sons, New York, 1977).

    Google Scholar 

  18. J. J. Erpenbeck and W. W. Wood, J. Stat. Phys. 35 321 (1984); J. J. Erpenbeck and W. W. Wood, J. Stat. Phys. 40 787 (1985).

    Google Scholar 

  19. B. J. Berne and R. Pecora Dynamic Light Scattering, Krieger Publ., Malabar, Fla. (1976).

    Google Scholar 

  20. B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53 3813 (1970).

    Google Scholar 

  21. The relative magnitude of the grid error goes as (Δy/λ)2; this undesirable grid effect may be minimized by using a cell/subcell hierarchy [1].

    Google Scholar 

  22. The cross and potential contributions exclude the grid error (second term in (6)) and only count the post collisional displacement (third term in (6)).

    Google Scholar 

  23. M. Reed and K. Flurchick, Comp. Phys. Comm. 81 56 (1994).

    Google Scholar 

  24. M. A. Fallavollita, J. D. McDonald and D. Baganoff, Comp. Sci. Eng. 3 283 (1992).

    Google Scholar 

  25. A. Frezzotti and C. Sgarra, J. Stat. Phys 73 193 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. J. Brey J. Marro J. M. Rubí M. San Miguel

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Alexander, F.J., Garcia, A.L., Alder, B.J. (1995). Simulation of the consistent Boltzmann equation for hard spheres and its extension to higher densities. In: Brey, J.J., Marro, J., Rubí, J.M., San Miguel, M. (eds) 25 Years of Non-Equilibrium Statistical Mechanics. Lecture Notes in Physics, vol 445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59158-3_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-59158-3_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59158-0

  • Online ISBN: 978-3-540-49203-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics