Skip to main content

Acceleration and radiation from a complex active region

  • 2 Flare Theory and Statistics
  • Conference paper
  • First Online:
Coronal Magnetic Energy Releases

Part of the book series: Lecture Notes in Physics ((LNP,volume 444))

  • 146 Accesses

Abstract

Active regions are treated in this review as a “paradigm” of a complex dynamical system. Active regions are formed by magnetic fibers escaping from the turbulent convection zone. Random movements of the feet of the fibers in the photosphere and emergence of new magnetic flux from the convection zone are responsible for the formation of neutral sheets and magnetic discontinuities inside the active region, which are the sites for magnetic dissipation. A simple model, based on the scenario of self organised criticality, reproduces many of the known flare characteristics. The same model is used to provide a large number of nanoflares, which can heat the corona. We also show that this complex, inhomogeneous active region, is an efficient accelerator and reproduce the observed dm spikes and type III bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anastasiadis, A. & Vlahos, L. (1991): A&A 245, 271

    Google Scholar 

  2. Anastasiadis, A. & Vlahos, L. (1994): ApJ 428, 819

    Google Scholar 

  3. Bai, T. & Ramaty, R. (1979): ApJ 227, 1072

    Google Scholar 

  4. Biskamp, D. (1993):“ Nonlinear Magnetohydrodynamics”, Cambridge University Press, p. 237

    Google Scholar 

  5. Benz, A.O. (1986): Solar Phys. 104, 99

    Google Scholar 

  6. Bogdan, T.J. (1992): “Electromechanical coupling of the solar atmosphere”, eds. D.S. Spicer & P. MacNeice, AIP, p. 79

    Google Scholar 

  7. Buttighoffer, A., Pick, M., Roelof, E.C., Hoang, S., Mangeney, A., Lanzerotti, L.S., Forsyth, R.S. and Phille, S.L. (1994): J. Geophys, Res., in press

    Google Scholar 

  8. Clutter, D.W., Smith, A.M.O. and Brazier, J.G. (1959): Douglas Aircraft Company Report, no. ES29075

    Google Scholar 

  9. Crosby, N.B., Aschwanden, M.J. & Dennis, B.R. (1992): Solar Phys. 143, 275

    Google Scholar 

  10. Decker, R.B. (1993): J. Geophys. Res. 98, 33

    Google Scholar 

  11. Dennis, B.R. (1985): Solar Phys. 100, 465

    Google Scholar 

  12. Galsgaard, K. and Nordlund, A. (1994): Space Sci. Rev. 68, 75

    Google Scholar 

  13. Güdel, M., Aschwanden, M.J. & Benz, A.O. (1991): A&A 251, 285

    Google Scholar 

  14. Hillaris, A., Alissandrakis, C.E. & Vlahos, L. (1988): A&A 195, 301

    Google Scholar 

  15. Hillaris, A., Alissandrakis, C.E., Caroubalos, C. & Bougeret, J. L. (1990): A&A 229, 216

    Google Scholar 

  16. Hillaris, A. (1992): Ph.D. thesis, Univ. of Athens

    Google Scholar 

  17. Hudson, H.S. (1991): Solar Phys. 133, 357

    Google Scholar 

  18. Leighton, R.B. (1963): Ann. Rev. Astr. Ap 1, 19

    Google Scholar 

  19. Lin, R.P., Potter, D.W., Gurnet, D.A. & Scarf, F.L. (1981): ApJ 251, 364

    Google Scholar 

  20. Lin, R.P., Meweldt, R.A. & van Hollebeke, M.A.I. (1982): ApJ 253, 949

    Google Scholar 

  21. Lin, R.P., Schwartz, R.A., Kane, S.R., Pelling, R.M. & Hurley, C.C. (1984): ApJ 285, 421

    Google Scholar 

  22. Lu, E.T., Hamilton, R.J. (1991): ApJ 380, L89

    Google Scholar 

  23. Lu, E.T., Hamilton, R.J., McTierman, J.M. & Bromund, K.R. (1993): ApJ 417, 841

    Google Scholar 

  24. Papadopoulos, K. (1975): Phys. Fluids 18, 1769

    Google Scholar 

  25. Parker, E.N. (1988): ApJ 330, 474

    Google Scholar 

  26. Pearce, J., Rowe, A.K. & Yeung, J. (1993): Ap&SS 208, 99

    Google Scholar 

  27. Priest, E. (1992): “Eruptive solar flares”, Z. Švestka, B.V. Jackson and M.E. Machado (eds), (Berlin, Springer Verlag), p. 15

    Google Scholar 

  28. Ryan, J.M. (1986): Solar Phys. 105, 365

    Google Scholar 

  29. Sheeley, N.R. (1967): Solar Phys. 1, 171

    Google Scholar 

  30. Spruit, H.C. and Zwaan, C. (1981): Solar Phys. 70, 207

    Google Scholar 

  31. Sudan, R.N. and Longcope, D.W. (1992): “Electromechanical coupling of the solar atmosphere”, eds. D.S. Spicer and P. MacNeice (New York, AIP), p. 100

    Google Scholar 

  32. Vlahos, L. & Rowland, H. (1984): A&A 139, 263

    Google Scholar 

  33. Vlahos, L. & Raoult, A. (1994): A&A, in press

    Google Scholar 

  34. Vlahos, L., Georgoulis, M., Kluiving, R. and Paschos, P. (1994): A&A, submitted

    Google Scholar 

  35. Webb, G.M., Axford, W.I. and Terasawa, T. (1983): “ApJ 270, 537

    Google Scholar 

  36. Weisbuch, G. (1991): “Complex Systems Dynamics” (Redwood, Addison-Wesley)

    Google Scholar 

  37. Zirker, J.B. (1993): Solar Phys. 148, 43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnold O. Benz Albrecht Krüger

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Vlahos, L. (1995). Acceleration and radiation from a complex active region. In: Benz, A.O., Krüger, A. (eds) Coronal Magnetic Energy Releases. Lecture Notes in Physics, vol 444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59109-5_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-59109-5_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59109-2

  • Online ISBN: 978-3-540-49189-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics