Skip to main content

On-line convex planarity testing

Extended abstract

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 903))

Abstract

An important class of planar straight-line drawings of graphs are convex drawings, where all faces are drawn as convex polygons. A graph is said to be convex planar if it admits a convex drawing. We consider the problem of testing convex planarity in a dynamic environment, where a graph is subject to on-line insertions of vertices and edges. We present on-line algorithms for convex planarity testing with the following performance, where n denotes the number of vertices of the graph: convex planarity testing and insertion of vertices take worst-case time O(1), insertion of edges takes amortized time O(log n), and the space requirement of the data structure is O(n). Furthermore, we give a new combinatorial characterization of convex planar graphs.

Research supported in part by the National Science Foundation under grant CCR-9007851, by the U.S. Army Research Office under grant DAAL03-91-G-0035 and DAAH04-93-0134, by the Advanced Research Projects Agency under contract N00014-91-J-4052, ARPA order 8225, by the NATO Scientific Affairs Division under collaborative research grant 911016, by the Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo and the grant 94.00023.CT07 of the Italian National Research Council, and by the Esprit II BRA of the European Community (project ALCOM).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Chiba, T. Yamanouchi, and T. Nishizeki, “Linear Algorithms for Convex Drawings of Planar Graphs,” in Progress in Graph Theory, J.A. Bondy and U.S.R. Murty (eds.), pp. 153–173, Academic Press, 1984.

    Google Scholar 

  2. N. Chiba, K. Onoguchi, and T. Nishizeki, “Drawing Planar Graphs Nicely,” Acta Informatica, vol. 22, pp. 187–201, 1985.

    Google Scholar 

  3. R.F. Cohen, G. Di Battista, R. Tamassia, I.G. Tollis, and P. Bertolazzi, “A Framework for Dynamic Graph Drawing,” Proc. 8th Symp. on Computational Geometry, pp. 261–270, 1992.

    Google Scholar 

  4. R.F. Cohen, G. Di Battista, R. Tamassia, and I.G. Tollis, “A Framework for Dynamic Graph Drawing,” to appear in SIAM Journal of Computing.

    Google Scholar 

  5. H. de Fraysseix, J. Pach, and R. Pollack, “How to Draw a Planar Graph on a Grid,” Combinatorica, vol. 10, pp. 41–51, 1990.

    Google Scholar 

  6. F. Dehne, H. Djidjev, J.-R. Sack, “An Optimal PRAM Algorithm for Planar Convex Embedding,” Proc. ALCOM Workshop on Graph Drawing, pp. 75–77, 1993.

    Google Scholar 

  7. G. Di Battista, P. Eades, H. de Fraysseix, P. Rosenstiehl, and R. Tamassia (eds.), Proc. ALCOM Workshop on Graph Drawing, 1993.

    Google Scholar 

  8. G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis, “Algorithms for Drawing Graphs: an Annotated Bibliography,” to appear in Computational Geometry Theory and Applications.

    Google Scholar 

  9. G. Di Battista, A. Giammarco, G. Santucci, and R. Tamassia, “The Architecture of Diagram Server,” Proc. IEEE Workshop on Visual Languages, pp. 60–65, 1990.

    Google Scholar 

  10. G. Di Battista, G. Liotta, and F. Vargiu, “Spirality of Orthogonal Representations and Optimal Drawings of Series-Parallel Graphs and 3-Planar Graphs,” Proc. 3rd Workshop on Algorithms and Data Structures, LNCS, vol. 709, pp. 151–162, 1993.

    Google Scholar 

  11. G. Di Battista and R. Tamassia, “Incremental Planarity Testing,” Proc. 30th IEEE Symp. on Foundations of Computer Science, pp. 436–441, 1989.

    Google Scholar 

  12. G. Di Battista and R. Tamassia, “On-line Graph Algorithms with SPQR-trees,” Proc. 17th Int. Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 443, pp. 598–611, 1990.

    Google Scholar 

  13. G. Di Battista and R. Tamassia, “On-line Planarity Testing,” Dept. Computer Science, Brown Univ., Technical Report CS-92-39, 1992.

    Google Scholar 

  14. G. Di Battista and R. Tamassia, “On-line Maintenance of Triconnected Components with SPQR-Trees,” Dept. Computer Science, Brown Univ., Technical Report CS-92-40, 1992.

    Google Scholar 

  15. G. Di Battista and L. Vismara, “Angles of Planar Triangular Graphs,” Proc. 25th ACM Symp. on the Theory of Computing, pp. 431–437, 1993.

    Google Scholar 

  16. D. Eppstein, G.F. Italiano, R. Tamassia, R.E. Tarjan, J. Westbrook, and M. Yung, “Maintenance of a minimum spanning forest in a dynamic planar graph,” Journal of Algorithms, vol. 13, pp. 33–54, 1992.

    Google Scholar 

  17. D. Eppstein, Z. Galil, G.F. Italiano, and T.H. Spencer, “Separator Based Sparsification for Dynamic Planar Graph Algorithms,” Proc. 25th ACM Symp. on the Theory of Computing, pp. 208–217, 1993.

    Google Scholar 

  18. I. Fary, “On Straight Lines Representation of Planar Graphs,” Acta Sci. Math. Szeged, vol. 11, pp. 229–233, 1948.

    Google Scholar 

  19. A. Garg, M. Goodrich, and R. Tamassia, “Area-Efficient Upward Tree Drawings,” Proc. 9th Symp. on Computational Geometry, pp. 359–368, 1993.

    Google Scholar 

  20. X. He and M.-Y. Kao, “Parallel Construction of Canonical Ordering and Convex Drawing of Triconnected Planar Graphs,” Proc. 4th Int. Symp. on Algorithms and Computation, Lecture Notes in Computer Science, vol. 762, pp. 303–312, 1993.

    Google Scholar 

  21. M. Himsolt, “A View to Graph Drawing through GraphEd”, Proc. ALCOM Workshop on Graph Drawing, pp. 117–118, 1993.

    Google Scholar 

  22. J. Hopcroft and R.E. Tarjan, “Dividing a Graph into Triconnected Components,” SIAM Journal of Computing, vol. 2, pp. 135–158, 1973.

    Google Scholar 

  23. G. Kant, “Drawing Planar Graphs using the lmc-ordering,” Proc. 33rd IEEE Symp. on Foundations of Computer Science, pp. 101–110, 1992.

    Google Scholar 

  24. G. Kant, “A More Compact Visibility Representation,” to appear in Proc. 19th Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol. 790, pp. 411–424, 1993.

    Google Scholar 

  25. J. La Poutré, “Alpha-Algorithms for Incremental Planarity Testing,” Proc. 26th ACM Symp. on the Theory of Computing, pp. 706–715, 1994.

    Google Scholar 

  26. Y.-L. Lin and S.S. Skiena, “Complexity Aspects of Visibility Graphs,” Dept. Computer Science, State Univ. of New York, Stony Brook, Technical Report 92-08, 1992.

    Google Scholar 

  27. S. Malitz and A. Papakostas, “On the Angular Resolution of Planar Graphs,” SIAM Journal on Discrete Mathematics, vol. 7, pp. 172–183, 1994.

    Google Scholar 

  28. T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, Annals of Discrete Mathematics, North Holland, 1988.

    Google Scholar 

  29. W. Schnyder, “Embedding Planar Graphs on the Grid,” Proc. ACM-SIAM Symp. on Discrete Algorithms, pp. 138–148, 1990.

    Google Scholar 

  30. D.D. Sleator and R.E. Tarjan, “A Data Structure for Dynamic Trees,” Journal of Computer System Sciences, vol. 24, pp. 362–381, 1983.

    Google Scholar 

  31. S.K. Stein, “Convex Maps,” Proc. Amer. Math. Soc., vol. 2, pp. 464–466, 1951.

    Google Scholar 

  32. E. Steinitz and H. Rademacher, Vorlesung über die Theorie der Polyeder, Springer, Berlin, 1934.

    Google Scholar 

  33. R. Tamassia, G. Di Battista, and C. Batini, “Automatic Graph Drawing and Readability of Diagrams,” IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-18, no. 1, pp. 61–79, 1988.

    Google Scholar 

  34. R.E. Tarjan, “Amortized Computational Complexity,” SIAM Journal on Algebraic Discrete Methods, vol. 6, n. 2, pp. 306–318, 1985.

    Google Scholar 

  35. C. Thomassen, “Planarity and Duality of Finite and Infinite Planar Graphs”, J. Combinatorial Theory, Series B, vol. 29, pp. 244–271, 1980.

    Google Scholar 

  36. C. Thomassen, “Plane Representations of Graphs,” in Progress in Graph Theory, ed. J.A. Bondy and U.S.R. Murty, pp. 43–69, Academic Press, 1984.

    Google Scholar 

  37. W.T. Tutte, “Convex Representations of Graphs,” Proc. London Math. Soc., vol. 10, pp. 304–320, 1960.

    Google Scholar 

  38. W.T. Tutte, “How to Draw a Graph,” Proc. London Math. Soc., vol. 13, pp. 743–768, 1963.

    Google Scholar 

  39. K. Wagner, “Bemerkungen zum Vierfarbenproblem,” Jber. Deutsch. Math.-Verein, vol. 46, pp. 26–32, 1936.

    Google Scholar 

  40. J. Westbrook, “Fast Incremental Planarity Testing,” Proc. 19th Int. Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 623, pp. 342–353, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ernst W. Mayr Gunther Schmidt Gottfried Tinhofer

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Battista, G., Tamassia, R., Vismara, L. (1995). On-line convex planarity testing. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 1994. Lecture Notes in Computer Science, vol 903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59071-4_52

Download citation

  • DOI: https://doi.org/10.1007/3-540-59071-4_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59071-2

  • Online ISBN: 978-3-540-49183-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics