Skip to main content

Scaling behavior of electric response in a non-linear composite

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 437))

Abstract

A short, general overview of non-linearity in electrical (current) response in two different regimes and their origins are discussed. Special attention is paid to some recent experiments on non-linear response in inhomogeneous (composite) materials. A model percolating structure to study this behavior has been introduced. Results for this model and some of its predictions for both do and ac non-linear response have been discussed.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.D. Mahan, L.M. Levinson and H.R. Philipp, J. Appl. Phys. 50, 2799 (1979)

    Article  Google Scholar 

  2. Hopping and Related Phenomena, eds. H. Fritzsche and M. Pollak, World Scientific, Singapore (1990); Hopping Transport in Solids, M. Pollak and B. Shklovskii, Elsevier, North Holland (1991); Fourth International Conference on Hopping and Related Phenomena, Marburg 1991, ed. H. Bottger, Phil. Mag. B 65, 593–894 (1992)

    Google Scholar 

  3. E.E. Mendez and G. Bastard, Phys. Today 46, 34 (1993) and references therein.

    Google Scholar 

  4. C.M. Soukoulis, J.V. Jose, E.N. Economou and Ping Sheng, Phys. Rev. Lett. 50, 764 (1983); A.M. Jayannavar, Solid State Commun. 69, 703 (1989)

    Article  Google Scholar 

  5. B.K. Chakrabarti, in this Proceeding

    Google Scholar 

  6. R.A. Webb, S. Washburn and C. P. Umbach, Phys. Rev.B 37, 8455 (1988)

    Article  Google Scholar 

  7. P.G.N. de Vegvar, G. Timp, P.M. Mankiewich, J.E. Cunningham, R. Beringer and R.E. Howard, Phys. Rev. B 38, 4326 (1988). See also the excellent review on the subject by S. Washburn and R.A. Webb, Rep. Prog. Phys. 55, 1311 (1992)

    Article  Google Scholar 

  8. B.L. Altshuler and P.A. Lee, Phys. Today 41, 36 (1988); R.A. Webb and S. Washburn, ibid p. 46 (These are two introductory reviews).

    Google Scholar 

  9. B.L. Altshuler and D.E. Khmelnitskii, Pis'ma Zh. Eksp. Teor. Fiz. 42, 291 (1985) [JETP Lett 42, 359 (1985)]; A.I. Larkin and D.E. Khmelnitskii, Zh. Eksp. Teor. Fiz. 91, 1815 (1986) [Sov. Phys. JETP 64,1075 (1986)]

    Google Scholar 

  10. H. Tang and Y. Fu, Phys. Rev. Lett. 67, 485 (1991)

    Article  PubMed  Google Scholar 

  11. See, e.g., Y. Imry in Directions in Condensed Matter Physics, pp. 101–163, eds. G. Grinstein and G. Mazenko, World Scientific, Singapore (1986)

    Google Scholar 

  12. Even in this semi-classical sense, these barriers are still fundamentally different from the Ohmic resistors since they contribute to the resistance but not to heat dissipation.

    Google Scholar 

  13. E. Burstein and S. Lundqvist eds., Tunneling Phenomena in Solids, Plenum, New York, 1969

    Google Scholar 

  14. For quite high voltages, other more complicated situations (e.g., negative differential conductance) may arise, but we donot address them in our work discussed here.

    Google Scholar 

  15. This behavior is reminiscent of Daniel Bideau's movie on elastic networks under increasing strains (shown in the present Workshop) and discussed in the present volume.

    Google Scholar 

  16. L.K. H. van Beek and B.I.C.F. van Pul, Carbon 2, 121 (1964); G.E. Pike and C.H. Seager, J. Appl. Phys. 48, 5152 (1977); Y. Gefen, W-H. Shih, R.B. Laibowitz and J.M. Viggiano, Phys. Rev. Lett. 57, 3097 (1986); E.K. Sichel, J.I. Gittelman, and P. Sheng, Phys. Rev. B 18, 5712 (1978); D. van der Putten, J.T. Moonen, H.B. Brom, J.C.M. Brokken-Zijp and M.A.J. Michels, Phys. Rev. Lett. 69, 494 (1992); D. Bhattacharyya, R. Basu, A. Ghosh, A. Manna, A. Nandy and P. Nandy, Biophys. J. 64, 550 (1993)

    Article  Google Scholar 

  17. K.K. Bardhan and R.K. Chakrabarty, Phys. Rev. Lett. 69, 2559 (1992);or]17.(b) Phys. Rev. Lett. 72, 1068 (1994)

    Article  PubMed  Google Scholar 

  18. R.K. Chakrabarty, K.K. Bardhan and A. Basu, J. Phys.: Condens. Matt. 5, 2377 (1993); see also J. Robertson, Amorphous Carbon, Adv. Phys. 35, 318-374 (1986) for filamented structure of a.-C.

    Article  Google Scholar 

  19. I-G. Chen and W.B. Johnson, J. Mat. Sc. 27, 5497 (1992)

    Article  Google Scholar 

  20. J.P. Clerc, G. Giraud, J.M. Laugier and J.M. Luck, The Electrical Conductivity of Binary Disordered Systems, Percolation Clusters, Fractals and Related Models, Adv. Phys. 39, 191–309 (1990)

    Google Scholar 

  21. A.K. Sen and A. Kar Gupta, unpublished

    Google Scholar 

  22. S. Roux and H.J. Herrmann, Europhys. Lett. 4, 1227 (1987)

    Google Scholar 

  23. H.E. Stanley, P.J. Reynolds, S. Redner and F. Family in Real-Space Renormalization, pp. 169–206, eds. T.W. Burkhardt and J.M.J. van Leeuwen, Springer-Verlag, Berlin (1982)

    Google Scholar 

  24. A.K. Sen and A. Kar Gupta, unpublished

    Google Scholar 

  25. A.R. Long, Hopping Conductivity in the Intermediate Frequency Range, pp. 207–231 in Hopping Transport in Solids [2]

    Google Scholar 

  26. S. Summerfield and P.N. Butcher, J. Phys. C 15, 7003 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kamal K. Bardhan Bikas K. Chakrabarti Alex Hansen

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Sen, A.K., Gupta, A.K. (1994). Scaling behavior of electric response in a non-linear composite. In: Bardhan, K.K., Chakrabarti, B.K., Hansen, A. (eds) Non-Linearity and Breakdown in Soft Condensed Matter. Lecture Notes in Physics, vol 437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58652-0_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-58652-0_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58652-4

  • Online ISBN: 978-3-540-49037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics