Skip to main content

Fracture roughness and physical implications

  • Conference paper
  • First Online:
Non-Linearity and Breakdown in Soft Condensed Matter

Part of the book series: Lecture Notes in Physics ((LNP,volume 437))

  • 168 Accesses

Abstract

A large number of studies of fracture surface topography have revealed that for a wide class of materials, and fracture conditions, the surfaces exhibit a self-affine character. Moreover, the roughness exponent which characterizes this self-affinity appears to be universal. In this paper, we analyse some physical consequences of this property. The examples we consider concern the permeability of a crack, a percolation transition through long-range correlated surfaces, the elastic contact between two rough surfaces, and a simple model of dynamic friction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. B. Mandelbrot, D. E. Passoja and A. J. Paullay, Nature 308, 721, (1984)

    Article  Google Scholar 

  2. P. Meakin, Phys. Rep. 235, 189, (1993)

    Article  Google Scholar 

  3. B. L. Cox and J. S. Y. Wang, Fractals 1, 87, (1993)

    Google Scholar 

  4. E. Bouchaud, in Proceedings of “Dislocations'93”, meeting held in Aussois, Fr. (April 1993)

    Google Scholar 

  5. R. H. Dauskardt, F. Haubensak and R. O. Ritchie, Acta Met. Mat. 38, 143, (1990)

    Article  Google Scholar 

  6. D. L. Davidson, J. Mat. Sci. 24, 681, (1989)

    Article  Google Scholar 

  7. E. Bouchaud, G. Lapasset and J. Planés, Europhys. Lett. 13, 73, (1990)

    Google Scholar 

  8. K. J. Måløy, A. Hansen, E. L. Hinrichsen and S. Roux, Phys. Rev. Lett. 68, 213, (1992)

    Article  PubMed  Google Scholar 

  9. A. Hansen, E. L. Hinrichsen and S. Roux, Phys. Rev. Lett. 66, 2476, (1991)

    Article  PubMed  Google Scholar 

  10. C. Poirier, M. Ammi, D. Bideau and J.-P. Troadec, Phys. Rev. Lett. 68, 216–219 (1992)

    Article  PubMed  Google Scholar 

  11. J. Kertész, V. K. Horváth, and F. Weber, Fractals, 1, 67 (1993)

    Google Scholar 

  12. T. Engøy, K. J. Måløy, A. Hansen, and S. Roux, preprint

    Google Scholar 

  13. J. Feder, “Fractals”, Plenum Press, (New York, 1988)

    Google Scholar 

  14. R. F. Voss, in Fundamental algorithms in computer graphics, ed. R. A. Earnshaw, Springer-Verlag, Berlin, pp 805–835, (1985)

    Google Scholar 

  15. S. Roux, J. Schmittbuhl and J. P. Vilotte, preprint

    Google Scholar 

  16. S. Roux, J. Schmittbuhl, J. P. Vilotte and A. Hansen, Europhys. Lett. 23, 277, (1993)

    Google Scholar 

  17. K. J. Evans, T. Kohl, R. J. Hopkirk and L. Rybach, Report to Swiss National Energy Research Fund, NEFF Project N° 359, (April 1992)

    Google Scholar 

  18. S. R. Brown, J. Geophys. Res. 92, 337, (1987); ibid. J. Geophys. Res. 94, 429, (1989); ibid. Geophys. Res. Lett. 13, 1430, (1986)

    Google Scholar 

  19. P. Kurowski, I. Ippolito, S. Roux, M. Rosen, R. Chertcoff and J. P. Hulin, in Proceedings of “Porous Media”, D. Houi ed., meeting held in Toulouse, Fr., (June 1993)

    Google Scholar 

  20. S. Roux and A. Hansen, preprint

    Google Scholar 

  21. D. Salin, these proceedings

    Google Scholar 

  22. K. J. Måløy, these proceedings

    Google Scholar 

  23. H. Van Damme, these proceedings

    Google Scholar 

  24. R. Chandler, J. Koplik, K. Lerman and J. F. Willemsen, J. Fluid Mech. 119, 249, (1982)

    Google Scholar 

  25. M. B. Isichenko, Rev. Mod. Phys. 64, 961, (1992)

    Article  Google Scholar 

  26. A. Weinrib and B.I. Halperin, Phys. Rev. B, 29, 387, (1984)

    Article  Google Scholar 

  27. S. Prakash, S. Havlin, M. Schwartz and H. E. Stanley, Phys. Rev. A, 46, 1724, (1992)

    Article  Google Scholar 

  28. J. Schmittbuhl, J. P. Vilotte and S. Roux, J. Phys. A 26, 6115, (1993)

    Google Scholar 

  29. D. Stauffer, “Introduction to percolation theory”, (Taylor and Francis, London, 1985)

    Google Scholar 

  30. K. L. Johnson, Contact Mechanics, Cambridge Univ. Press, (New York,1985)

    Google Scholar 

  31. F. M. Borodich, C. R. Acad. Sci. 316, 281, (1993)

    Google Scholar 

  32. K. J. Måløy, X.-I. Wu, A. Hansen and S. Roux, Europhys. Lett. 24, 35, (1993)

    Google Scholar 

  33. J. T. Oden and J. A. C. Martins, Comp. Meth. in Appl. Mech. Eng. 52, 527, (1985)

    Article  Google Scholar 

  34. N. Barton and V. Choubey, Rock Mech., 10, 1, (1977)

    Article  Google Scholar 

  35. J. Schmittbuhl, J. P. Vilotte and S. Roux, to appear in J. Physique (Feb. 1994)

    Google Scholar 

  36. T. Pöschel and H. J. Herrmann, Physica A 198, 441, (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kamal K. Bardhan Bikas K. Chakrabarti Alex Hansen

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Roux, S. (1994). Fracture roughness and physical implications. In: Bardhan, K.K., Chakrabarti, B.K., Hansen, A. (eds) Non-Linearity and Breakdown in Soft Condensed Matter. Lecture Notes in Physics, vol 437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58652-0_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-58652-0_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58652-4

  • Online ISBN: 978-3-540-49037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics