Skip to main content

Spring-network and finite-element models for elasticity and fracture

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 437))

Abstract

This paper discusses computational models for elastic deformation and fracture of brittle, disordered materials. In particular, we compare models based on networks of springs and finite-element discretizations. When the length scale of elements in the numerical model corresponds to discrete material elements, spring-network approaches are valid. Their validity as models for a continuous medium is examined by comparing to a finite-volume discretization and by studying (a) the ability to capture uniform strain, and (b) the ability to model crack propagation in an isotropic, homogeneous, brittle material. As models of continuous media, spring-networks exhibit several numerical artifacts. For such problems, we conclude that finite-element methods can be used to the same degree of accuracy or better than spring-network models.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.R. Lawn, Fracture of Brittle Solids, Second edition, Cambridge University Press, New York (1993).

    Google Scholar 

  2. M. Kachanov,J. Eng. Mech. Div. Trans. ASCE, EM5, 106, 1039 (1980).

    Google Scholar 

  3. R. Talreja,Mechanics of Materials, 12 165–180 (1991).

    Article  Google Scholar 

  4. A.G. Evans,J. Am. Ceram. Soc., 73[2] 187–206 (1990).

    Article  Google Scholar 

  5. J.L. Runyan, S.J. Bennison,J. Eur. Ceram. Soc. 7 93–99 (1991).

    Article  Google Scholar 

  6. P.M. Duxbury, P.L. Leath,J. Phys. A, 20 L411–L415 (1987).

    Google Scholar 

  7. P.M. Duxbury, Y. Li,in Disorder and Fracture, J.C. Charmet et al. (eds.), Chapter 8, p 141, Plenum Press, New York (1990).

    Google Scholar 

  8. P.M. Duxbury, Y. Li,in Random Media and Composites, R.V. Kohn, G.W. Milton (eds.), SIAM, New York, chapter 8, p. 115, (1989).

    Google Scholar 

  9. B.K. Chakrabarti,Reviews of Solid State Science, 2 [4] 559–579 (1988).

    Google Scholar 

  10. W.A. Curtin,J. Mech. Phys. Solids, 41 [2] 217–245 (1993).

    Article  Google Scholar 

  11. D.J. Srolovitz, P.D. Beale,J. Amer. Cer. Soc., 71 [5] 362–369 (1988).

    Article  Google Scholar 

  12. G.N. Hassold, D.J. Srolovitz,Phys. Rev. B, 39 [13] 9273–9281 (1989).

    Article  Google Scholar 

  13. P. Meakin,Science, 252, 226–234 (1991).

    Google Scholar 

  14. S. Roux,in Statistical Models for the Fracture of Disordered Media, H.J. Herrmann, S. Roux (eds), (87–114), Elsevier Science Publishers B.V. (North-Holland) (1990).

    Google Scholar 

  15. W.A. Curtin, H. Scher,J of Mat. Res., 5, [3], 535–553, (1990).

    Google Scholar 

  16. M. Sahimi, S. Arbabi,Phys. Rev. B, 47, [2], 713–722 (1993).

    Article  Google Scholar 

  17. T. Kawai,Seisan Kenkyu, (Inst. Ind. Sci., University of Tokyo), 29, 208–210, (1977).

    Google Scholar 

  18. A. Kikuchi, T. Kawai, N. Suzuki,Comp. Struct., 44 [1-2] 469–480 (1992).

    Article  Google Scholar 

  19. Y. Termonia, P. Smith,Macromolecules, 20 835–838 (1987).

    Article  Google Scholar 

  20. Y. Termonia,J. Mat. Sci., 24 (1989).

    Google Scholar 

  21. L. Monette, M.P. Anderson, S. Ling, G.S. Grest,J. Mat. Sci., 27 [16] 4393–4405 (1992).

    Article  Google Scholar 

  22. N.J. Burt, J.W. Dougill,J. Engng. Mech. Div. ASCE, 103, 365–376, (1977).

    Google Scholar 

  23. E. Schlangen, J.G.M. Van Mier,Int. J. Dam. Mech., 1, 435–454 (1992).

    Google Scholar 

  24. E. Schlangen, J.G.M. Van Mier,Mat. Res. Soc. Symp. Proc., 278 153–158 (1992).

    Google Scholar 

  25. W.A. Curtin, H. Scher,J. Mat. Res., 5 [3] 554–562 (1990).

    Google Scholar 

  26. R. LeSar, A.D. Rollett, D.J. Srolovitz,Mat. Sci. Engng., A155, 267–274, (1992).

    Article  Google Scholar 

  27. W.A. Curtin, K. Futumura,Acta Met. Mat., 38 [11] 2051–2058 (1990).

    Article  Google Scholar 

  28. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, Fourth Edition, McGraw-Hill (London) (1989).

    Google Scholar 

  29. S.N. Atluri (editor), Computational Methods in the Mechanics of Fracture, North-Holland, New York (1986).

    Google Scholar 

  30. A.R. Ingraffea, V. Saouma,Fracture Mechanics of Concrete, G.C Sih, A. DiTommaso (editors), EAFM series, Martinus Nijhoff publishers, Dordrecht, (171–222) (1985).

    Google Scholar 

  31. S. Ghosh, S.N. Mukhopadhaya,Comp. Meth. App. Mech. Engng., 104 211–247 (1993).

    Article  Google Scholar 

  32. M. Ortiz, S. Suresh, J. App. Mech., 60, 77–84, (1993).

    Google Scholar 

  33. P.A. Cundall, O.D.L. Strack,Géotechnique 29, 47–65, (1979).

    Google Scholar 

  34. A. Jagota, G.W. Scherer,J. Amer. Cer. Soc. (1993), 76 [12] 3123–3135 (1993).

    Article  Google Scholar 

  35. E. Schlangen,Experimental and numerical analysis of fracture processes in concrete, Ph.D. Thesis, Technical University of Delft, Delft, The Netherlands (1993).

    Google Scholar 

  36. D. Stauffer,Introduction to Percolation Theory, Taylor and Francis, (London and Philadelphia), (1985).

    Google Scholar 

  37. S. Feng, P.N. Sen,Phys. Rev. Let., 52, [3], 216–219, (1984).

    Article  Google Scholar 

  38. E. Duering, D.J. Bergman,Phys. Rev. B, 37 [16] 9460–9476 (1988).

    Article  Google Scholar 

  39. D.J. Bergman, E. Duering,Phys. Rev. B, 34, [11], 8199–8201 (1986).

    Article  Google Scholar 

  40. M. Sahimi, S. Arbabi, Mat. Res. Soc. Symp. Proc., 207 201–228 (1991).

    Google Scholar 

  41. A.R. Day, K.A. Snyder, E.J. Garboczi, M.F. Thorpe,J. Mech. Phys. Sol., 40, [5], 1031–1052 (1992).

    Article  Google Scholar 

  42. A. Hrennikoff,J. App. Mech., A169–A175, (1941).

    Google Scholar 

  43. M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, New York (1954).

    Google Scholar 

  44. P.N. Keating, Phys. Rev. 145 [2] 637–645 (1966).

    Article  Google Scholar 

  45. W. McGuire, R.H. Gallagher, Matrix Structural Analysis, John Wiley and Sons, (New York), (1979).

    Google Scholar 

  46. S. Roux, A. Hansen,Europhys. Let., 6 [4] 301–306 (1988).

    Google Scholar 

  47. R. Thomson, S.J. Zhou, A.E. Carlsson, V.K. Tewary,Phys. Rev. B, 46 [1] 10613–10622 (1992).

    Article  Google Scholar 

  48. R. Becker, A. Needleman, S. Suresh, V. Tvergaard, A.K. Vasudevan,Acta Metall., 37 [1] 99–120 (1989).

    Article  Google Scholar 

  49. L. Lapidus, G.F. Pinder,Numerical Solution of Partial Differential Equations in Science and Engineering, John Wiley and Sons (New York) (1982).

    Google Scholar 

  50. V. Selmin,Comp. Meth. App. Mech. Eng., 102, 107–138 (1993).

    Article  Google Scholar 

  51. A. Jagota, K.R. Mikeska, R.K. Bordia, J. Amer. Cer. Soc., 73, [8], 2266–2273 (1990).

    Article  Google Scholar 

  52. M. Ostoja-Starzewski, C. Wang,Acta Mech., 80 61–80 (1989).

    Article  Google Scholar 

  53. M. Ostoja-Starzewski, C. Wang,Acta Mech., 84 47–61 (1990).

    Article  Google Scholar 

  54. M. Ostoja-Starzewski, Mechanics of Materials, 16 55–64 (1993).

    Article  Google Scholar 

  55. J.T. Jenkins,in Modern Theory of Elasticity and Applications, J. Wu, T.C.T. Ting, D.M. Barnett (eds.), SIAM, Philadelphia, 368–377 (1991).

    Google Scholar 

  56. C.S. Chang, C.L. Liao,Int. J. Sol. Struct., 26, [4], 437–453, (1990).

    Article  Google Scholar 

  57. C.T. Sun, T.Y. Yang,J. Elast., 5 [1] 45–58 (1975).

    Article  Google Scholar 

  58. Z.P. Bažant, M. Christensen,Int. J. Sol. Struct., 8, 327–346, (1972).

    Article  Google Scholar 

  59. F.P. Preparate, M.I. Shamos, Computational Geometry, An Introduction, Springer-Verlag, Berlin (1985).

    Google Scholar 

  60. M. Ostoja-Starzewski,Mechanics Research Communications, 14 [4] 255–262 (1987).

    Article  Google Scholar 

  61. R. Gibala, A.K. Ghosh, D.C. Van Aken, D.J. Srolovitz, A. Basu, H.Chang, D.P. Mason, W. Yang,Mal. Sci. Eng., A155 147–158 (1992).

    Article  Google Scholar 

  62. S. Roux, A. Hansen,J. Phys. II, France, 2 1007–1021 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kamal K. Bardhan Bikas K. Chakrabarti Alex Hansen

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Jagota, A., Bennison, S.J. (1994). Spring-network and finite-element models for elasticity and fracture. In: Bardhan, K.K., Chakrabarti, B.K., Hansen, A. (eds) Non-Linearity and Breakdown in Soft Condensed Matter. Lecture Notes in Physics, vol 437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58652-0_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-58652-0_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58652-4

  • Online ISBN: 978-3-540-49037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics