Step-size adaptation based on non-local use of selection information

  • Andreas Ostermeier
  • Andreas Gawelczyk
  • Nikolaus Hansen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 866)


The performance of Evolution Strategies (ESs) depends on a suitable choice of internal strategy control parameters. Apart from a fixed setting, ESs facilitate an adjustment of such parameters within a self-adaptation process. For step-size control in particular, various adaptation concepts were evolved early in the development of ESs. These algorithms mostly work very efficiently as long as the relative sensitivities of the parameters to be optimized are known. If this scaling is not known, the strategy has to adapt individual step-sizes for the parameters. In general, the number of necessary step-sizes (variances) equals the dimension of the problem. In this case, step-size adaptation proves to be difficult.

The algorithm presented in this paper is a development based on the derandomized scheme of imitative step-size control. The new adaptation concept uses information accumulated from the preceding generations with an exponential fading of old information instead of using information from the current generation only. Compared to the conventional adaptation scheme, this enables a less locally determined step-size control and allows a much faster adaptation of individual step-sizes without increasing disturbing random effects and without additional evaluations of the fitness function. The adaptation of the general step-size can be improved as well.


evolution strategy adaptation self-adaptation mutative step-size control step-size individual step-size scaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Hoffmeister, F. & Bäck, T. (1991). Genetic algorithms and evolution strategies: Similarities and differences. In (Schwefel & Männer 1991), pages 455–470.Google Scholar
  2. Ostermeier, A., Gawelczyk, A., Hansen, N. (1994). A Derandomized Approach to Self Adaptation of Evolution Strategies. In Evolutionary Computation (to be published).Google Scholar
  3. Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Stuttgart: Frommann-Holzboog.Google Scholar
  4. Rechenberg, I. (1978). Evolutionsstrategien. In B. Schneider and U. Ranft (Eds.), Simulationsmethoden in der Medizin und Biologie, Berlin: Springer.Google Scholar
  5. Rechenberg, I. (1994). Evolutionsstrategie '94. Stuttgart: Frommann-Holzboog (in print).Google Scholar
  6. Schwefel, H.-P. (1977). Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Volume 26 of Interdisciplinary systems research. Basel: Birkhäuser.Google Scholar
  7. Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. Chichester: Wiley.Google Scholar
  8. Schwefel, H.-P. (1987). Collective phenomena in evolutionary systems. In Preprints of the 31st Annual Meeting of the International Society for General System Research, Budapest, 2: 1025–32.Google Scholar
  9. Schwefel, H.-P. & Männer, R. (Eds.) (1991). Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  10. Voigt, H.-M., Born, J. & Treptow, J. (1991). The Evolution Machine. Manual. iir, Informatik, Informationen, Reporte.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Andreas Ostermeier
    • 1
  • Andreas Gawelczyk
    • 1
  • Nikolaus Hansen
    • 1
  1. 1.Fachgebiet Bionik und EvolutionstechnikTechnische Universität BerlinBerlin

Personalised recommendations