Advertisement

On supersymmetric and topological quantum mechanical models

  • Laurent Baulieu
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 436)

Abstract

We explain the details of two supersymmetric quantum mechanical models. Their simplicity make them solvable although they share the characteristics of more sophisticated models based on the gauge fixing of topological invariants. The first model is a supersymmetric quantum mechanical system defined on a punctured plane and leads to topological observables which we compute. The absences of a ground state and of a mass gap are special features of this system. The second model is the supersymmetric description of spin-one particles moving in D-dimensional space-time. We show that it is a topological model in a space with two more dimensions.

Keywords

Gauge Function Ghost Number Topological Quantum Supersymmetric Quantum Mechanic BRST Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Witten, Comm. of Math. Phys. 117, (1988), 353; Comm. of Math. Phys. 118, (1988) 601; Phys. Lett. B206, 1988.Google Scholar
  2. [2]
    For a review see O. Birmingham, M. Blau, M. Rakowski and G. Thomson, Physics Reports 209, (1991), 129 and references therein.Google Scholar
  3. [3]
    E. Witten, Comm. of Math. Phys. 121, (1989), 351.Google Scholar
  4. [4]
    L. Baulieu and I.M. Singer, Nucl. Phys. Proc. Suppl. 5B, (1988), 12; Comm. of Math. Phys. 125, (1989), 227; Comm. of Math. Phys. 135, (1991), 253.Google Scholar
  5. [5]
    L. Baulieu and C. Aragao de Carvalho Phys. Lett. B275 (1991) 323; Phys. Lett. B275 (1991)335.Google Scholar
  6. [6]
    D. Birmingham, M. Rakowski and G. Thompson, Nucl. Phys. B329 (1990) 83; D. Birmingham and M. Rakowski Mod. Phys. Lett. A4 (1989) 1753; F. Delduc, F. Gieres and S.P. Sorella Phys. Lett. B225 (1989) 367.Google Scholar
  7. [7]
    S. Fubini and E. Rabinovici Nucl. Phys. B245 (1984) 17; V. de Alfaso, S. Fubini and G. Furlan Nuovo Cimento 34 A, (1976), 569.Google Scholar
  8. [8]
    E. Witten, Nucl. Phys. B323 (1989) 113.Google Scholar
  9. [9]
    L. Baulieu, B. Grossman and R. Stora, Phys. Lett. B180 (1986) 95.Google Scholar
  10. [10]
    A. Forge and E. Rabinovici Phys. Rev. D32, (1985), 927.Google Scholar
  11. [11]
    A. C. Davis, A. J. Macfarlane, P. C. Popat, and J. W. Van Holten J. Phys. A Math. Gen. 17, (1984), 2945.Google Scholar
  12. [12]
    E. Witten, Nucl. Phys. B202, (1982), 253. L. Alvarez Gaumé, Comm. of Math. Phys. 90, (1983), 161; D. Friedan and P. Windey Nucl. Phys. B235, (1984), 395.Google Scholar
  13. [13]
    N.A. Alvez, H. Aratyn and A.H. Zimmerman Phys. Rev. D31, (1985), 3298; R. Akhoury and A. Comtet Nucl. Phys. B246, (1984), 253.Google Scholar
  14. [14]
    F.A. Berezin and M.S. Marinov, JETP Lett. 21 (1975) 320 and Ann. Phys. NY 104 (1977) 336; R. Casalbuoni, Nuovo Cimento 33A (1976) 389 and Phys. Lett. 62B (1976) 49; A. Barducci, R. Casalbuoni and L. Lusanna, Nuovo Cimento 35A (1976) 377; L. Brink, S. Deser, B. Zumino, P. di Vecchia and P.S. Howe Phys. Lett. 64B (1976) 43.Google Scholar
  15. [15]
    L. Brink and J.H. Schwarz, Nucl. Phys. B121 (1977) 285; L. Brink, P. di Vecchia and P.S. Howe, Nucl. Phys. B118 (1977) 76 and Phys. Lett. 65B (1976) 471; S. Deser and B. Zumino Phys. Lett. 65B (1976) 369.Google Scholar
  16. [16]
    A.M. Polyakov, Phys. Lett. 103B (1981) 211.Google Scholar
  17. [17]
    P.A.M. Dirac. Lectures on Quantum Mechanics, (Belfer Graduate School of Science, Yeshiva University; New York; 1964); M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press; 1992).Google Scholar
  18. [18]
    W. Siegel, Introduction to String Field Theory. (World Scientific, 1988).Google Scholar
  19. [19]
    A.M. Polyakov, Gauge Fields and Strings (Harwood Academic Publishers; 1987); VI. S. Dotsenko, Nucl. Phys. B285 (1987) 45.Google Scholar
  20. [20]
    R.H. Rietdijk and J.W. van Holten, Class. Quantum Grav. 7 (1990) 247.Google Scholar
  21. [21]
    P. Howe, S. Penati, M. Pernici and P. Townsend, Phys. Lett. 215B (1988) 555.Google Scholar
  22. [22]
    R. Marnelius and U. Martensson, Nucl. Phys. B335 (1990) 395; U. Martensson, Preprint Goteborg-92-3 (Jan. 92).Google Scholar
  23. [23]
    P. Van Nieuwenhuyzen, Phys. Rep. 68C (1981) 189.Google Scholar
  24. [24]
    R.H. Rietdijk and J.W. van Holten, Class. Quantum, Grav. 10 (1993) 575.Google Scholar
  25. [25]
    A. Papapetrou, Proc. Roy. Soc. London A209 (1951) 248.Google Scholar
  26. [26]
    L.D. Landau, The Classical Theory of Fields. (Pergamon Press; London; 1971).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Laurent Baulieu
    • 1
  1. 1.LPTHE, Universités Pierre et Marie Curie and Denis DiderotParisFrance

Personalised recommendations