Symplectic geometry of the Chern-Simons theory

  • A. Yu. Alekseev
  • A. Z. Malkin
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 436)


This article is a review of two original papers [1], [2]. We begin with a description of Kirillov symplectic form and quantum mechanics on a coadjoint orbits of a simple Lie group. This theory may be generalized for the case of a Poisson-Lie group. Both these theories are important for understanding of the Chern-Simons model which may be treated as a 3D gauge theory interacting with coadjoint orbits sitting on Wilson lines. Due to topological nature of the Chern Simons theory one can get rid of the gauge fields in exchange of modification of coadjoint theories. We discover that this modification is exactly the same as we find in the Poisson-Lie case.


Modulus Space Riemann Surface Poisson Bracket Wilson Line Marked Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.Yu.Alekseev, A.Z.Malkin, Symplectic structures associated to Lie-Poisson groups, preprint PAR-LPTHE 93-08, UUITP 5/1993, HEP-TH 9303038, to be published in Comm. Math. Phys.Google Scholar
  2. [2]
    A.Yu.Alekseev, A.Z.Malkin, Symplectic structure of the moduli space of flat connections on a Riemann surface, Hep-th 9312004, submitted to Comm. Math. Phys.Google Scholar
  3. [3]
    E.Witten, Quantum Field Theory and the Jones Polynomial, Comm. Math. Phys. 121 (1989) p.351.Google Scholar
  4. [4]
    A.Gerasimov, Localization in GWZW and Verlinde formula, Hep-th 9305090.Google Scholar
  5. [5]
    M.Blau, G.Thompson, Derivation of the Verlinde Formula From ChernSimons Theory And The GIG Model, Nucl. Phys. B 408, 1993, p.345Google Scholar
  6. [6]
    S.Elitzur, G.Moore, A.Schwimmer, N.Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) p.108.Google Scholar
  7. [7]
    A.Yu.Alekseev, L.D.Faddeev, S.L.Shatashvili, Quantization of Symplectic orbits of compact Lie groups by means of the functional integral, Journ. Geom. Phys., vol.5, no.3, 1989, pp.391–406.Google Scholar
  8. [8]
    K.Gawedzki, F.Falceto, On quantum group symmetries of conformal field theories, Preprint IHES/P/91/59, September 1991.Google Scholar
  9. [9]
    V.I.Arnold, Mathematical methods of classical mechanics. Springer-Verlag 1980.Google Scholar
  10. [10]
    A.A.Kirillov, Elements of the theory of representations, Springer-Verlag 1976.Google Scholar
  11. [11]
    H.B.Nielsen, D.Rohrlich, A path integral to quantize spin, Nucl. Phys. B 299, 1988, p. 471.Google Scholar
  12. [12]
    A.J.Niemi, P.Pasanen, Orbit geometry, group representations and topological quantum field theories, Phys. Lett. B 253, 1991, pp. 349–356.Google Scholar
  13. [13]
    V.G.Drinfeld, Quantum groups, in Proc. ICM, MSRI, Berkeley, 1986, p.798.Google Scholar
  14. [14]
    M.A.Semenov-Tian-Shansky, Dressing transformations and Poisson-Lie group actions, In: Publ. RIMS, Kyoto University 21, no.6, 1985, p.1237.Google Scholar
  15. [15]
    J.H.Lu, A.Weinstein, Poisson-Lie groups, dressing transformations and Bruhat decompositions, J.Diff.Geom., v.31, 1990, p.501.Google Scholar
  16. [16]
    V.V.Fock, A.A.Rosly Poisson structure on the moduli space of flat connections on Riemann surfaces and r-matrix, preprint ITEP 72-92, June 1992, Moscow.Google Scholar
  17. [17]
    M.Atiyah, R.Bott, The Yang-Mills equations over a Riemann surface, Phil. Trans. R. Soc A 308 (1982), p.523.Google Scholar
  18. [18]
    A.Weinstein, The local structure of Poisson manifolds, J. Diff. Geom., v.18, n.3, pp.523–557. (1983)Google Scholar
  19. [19]
    A.Yu.Alekseev, Integrability in the Hamiltonian Chern-Simons theory, Hepth 9311074.Google Scholar
  20. [20]
    A.Yu.Alekseev, H.Grosse, V.Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons theory, to appear.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • A. Yu. Alekseev
    • 1
  • A. Z. Malkin
    • 1
  1. 1.Institute of Theoretical PhysicsUppsala UniversityUppsalaSweden

Personalised recommendations