Advertisement

Quantum group and magnetic translations. Bethe-Ansatz solution for bloch electrons in a magnetic field

  • P. B. Wiegmann
  • A. V. Zabrodin
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 436)

Abstract

We present a new approach to the problem of Bloch electrons in magnetic field, by making explicit a natural relation between magnetic translations and the quantum group U9(sl2). The approach allows to express the spectrum and the Bloch function as solutions of the Bethe-Ansatz equations typical for completely integrable quantum systems

Keywords

Quantum Group Casimir Operator Bloch Function Mathematical Discipline Bloch Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.Zak, Phys. Rev. 134 1602 (1964)Google Scholar
  2. [2]
    M.Ya.Azbel, Sov. Phys.JETP 19 634 (1964)Google Scholar
  3. [3]
    G.H.Wannier,Phys.Status Solidi 88, 757 (1978)Google Scholar
  4. [4]
    D.R.Hofstadter,Phys. Rev. B 14 2239 (1976)Google Scholar
  5. [5]
    D.J.Thouless, M.Kohmoto, P.Nightingale, M.den Nijs, Phys.Rev.Lett 49,405 (1982)Google Scholar
  6. [6]
    S.Aubry and G.Andre Ann.Israel Phys.Soc. 3, 131 (1980)Google Scholar
  7. [7]
    D.J.Thouless, Phys. Rev. 28 4272 (1983)Google Scholar
  8. [8]
    H.Hiramoto, M.Kohmoto, Int.J.Mod.Phys. B 6, 281 (1992)Google Scholar
  9. [9]
    P.W.Anderson in Proc. of Nobel Symp. 73 Physica Scripta T27, (1988)Google Scholar
  10. [10]
    P.B.Wiegmann in Proc. of Nobel Symp. 73 Physica Scripta T27, (1988)Google Scholar
  11. [11]
    P.P.Kulish, N.Yu.Reshetikhin Zap.nauch.semin.LOMI 101, 112 (1980)Google Scholar
  12. [12]
    E.K.Sklyanin, Uspekhi Mat.Nauk 40 214 (1985)Google Scholar
  13. [13]
    V.G.Drinfeld, Dokl.Acad.Nauk 283 1060 (1985)Google Scholar
  14. [14]
    M.Jimbo Lett.Math. Phys. 10 63 (1985)Google Scholar
  15. [15]
    N.Yu.Reshetikhin, L.A.Takhtadjan, L.D.Faddeev,Algebra i Analiz 1, 178 (1989)Google Scholar
  16. [16]
    P.Roche, D.Arnaudon Lett.Math. Phys. 17, 295 (1989).Google Scholar
  17. [17]
    E.K.Sklyanin Func.Anal.Appl. 17, 273 (1983)Google Scholar
  18. [18]
    E.G.Floratos Phys.Lett. B233, 235 (1989).Google Scholar
  19. [19]
    E.K.Sklyanin Zap.nauch.semin.LOMI 134, 112 (1983)Google Scholar
  20. [20]
    A.V.Turbiner Comm.Math. Phys. 118 467 (1988)Google Scholar
  21. [21]
    V.V.Bazhanov and Yu.G.Stroganov J.Stat.Phys. 59. 799 (1990)Google Scholar
  22. [22]
    A.Ushveridze Sov.Journal Part.Nucl. 20, 185 (1989), ibid 23, 25 (1992)Google Scholar
  23. [23]
    E.K.Sklyanin J.Phys. A 21, 2375 (1988)Google Scholar
  24. [24]
    I.Cherednik Theor.Mat. Fys. 61 35 (1984)Google Scholar
  25. [25]
    see e.g.G.Gasper and M.Rahman,Basic Hypergeometric Seriaes (1990), Cambridge Univ.Press and N.Vilenkin, A.Klimyk, Representation of Lie Groups and Special Functions,vol.3 (1992) Kluwer Acad.Publ.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • P. B. Wiegmann
    • 1
    • 2
  • A. V. Zabrodin
    • 3
    • 4
  1. 1.James Frank Institute and Enrico Fermi InstituteUniversity of ChicagoChicago
  2. 2.Landau Institute for Theoretical PhysicsUSA
  3. 3.Enrico Fermi Institute and Mathematical Disciplines CenterUniversity of ChicagoChicago
  4. 4.the Institute of Chemical PhysicsMoscowRussia

Personalised recommendations