On background independence in string theory

  • Samson L. Shatashvili
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 436)


The problems with background independence are discussed in the example of open string theory. Based on the recent proposal by Witten I calculate the String Field Theory action in conformal perturbation theory to second order and demonstrate that the proper treatment of contact terms leads to non-trivial equations of motion. I conjecture the form of the field theory action to all orders.


Open String Total Derivative Conformal Field Theory Ghost Number BRST Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Witten, Phys.Rev., D46 (1992) 5446, hep-th-9208027.Google Scholar
  2. [2]
    A. Sen, B. Zwiebach, Quantum Background Independence of Closed String Theory, Preprint MIT-CTP-2244, TIFR-TH-93-37, hep-th/9311009.Google Scholar
  3. [3]
    S. Shatashvili, Phys. Lett. B311 (1993) 83, hep-th-9303143.Google Scholar
  4. [4]
    E. Witten, Phys. Rev., D47 (1993) 3405, hep-th-9210065.Google Scholar
  5. [5]
    E. Fradkin and A. Tseytlin, Phys. Lett. B 163 (1985) 123.Google Scholar
  6. [6]
    A. Abouelsaood, C. Callan, C. Nappi and S. Yost, Nucl. Phys. B 280 (1987) 559.Google Scholar
  7. [7]
    A. Sen and B. Zwiebach, A note on gauge transformations in BatalinVilkovisky theory, Preprint MIT-CTP2240, TIFR-TH-93-38, hep-th/93099027.Google Scholar
  8. [8]
    A. B. Zamolodchikov, Yad. Fiz. 46 (1987) 1819, Sov. J. Nucl. Phys. 46 (1987) 1091.Google Scholar
  9. [9]
    K. K. Li and E. Witten, Phys. Rev. D, 48 (1993) 853, hep-th-9303067.Google Scholar
  10. [10]
    A. Polyakov, Unpublished, A. M. Polyakov, Gauge Fields and Strings, Harwood, 1991.Google Scholar
  11. [11]
    K. Ranganathan, H. Sonoda, B. Zwiebach, Connection on the state space over Conformal Field Theories, Preprint MIT-CTP-2206, hep-th-9304053.Google Scholar
  12. [12]
    A. Zamolodchikov, UnpublishedGoogle Scholar
  13. [13]
    S. Ghoshal and A. Zamolodchikov, Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory, Rutgers Preprint RU93-20, hep-th-9306002.Google Scholar
  14. [14]
    A. Zamolodchikov, Adv. St. in Pure Math., 19 (1989) 641.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Samson L. Shatashvili
    • 1
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrinceton

Personalised recommendations