Structures of K.Saito theory of primitive form in topological theories coupled to topological gravity

  • A. Losev
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 436)


Structure of topological theory coupled to topological gravity is studied on a typical example — Landau-Ginzburg theory. It is shown that all main ingredients of K.Saito theory of primitive form are implied in such gravity theory. Filtration, that he considers turns out to be filtration by degrees of Morita-Mamford classes, and can be considered as a filtration of equivariant cohomologies (equivariance with respect to rotation of local coordinate). Higher residue pairing are nothing by pairing in equivariant cohomologies induced by integration over C d . Section is the kernel of a contact term map. Axioms on goods sections follow from the symmetry of n-point correlation functions on genus zero.


Modulus Space Riemann Surface Marked Point Chern Class Contact Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.Witten, Nucl.Phys B340 (1990) 281Google Scholar
  2. [2]
    R. Dijkgraaf and E. Witten, Nucl.Phys B342 486Google Scholar
  3. [3]
    E.Verlinde and H.Verlinde,Nucl.Phys. B348 (1991) 457Google Scholar
  4. [4]
    R.Dijkgraaf, E.Verlinde, H.Verlinde, Proc. of the Trieste Spring School 1990, M.Green et al. eds., (World Scientific, 1991)Google Scholar
  5. [5]
    S.Kharchev,Nucl.Phys., 380B (1992) 181Google Scholar
  6. [6]
    M.Kontsevich,Comm. Math. Phys. 147 (1992) 1Google Scholar
  7. [7]
    M.Bershadsky et al, Holomorphic Anomalies in Topological Field Theoriespreprint HUTP-93/A008Google Scholar
  8. [8]
    I.M.Krichever,Comm. Math. Phys. 152 (1993) 539Google Scholar
  9. [9]
    K.Li,Nucl.Phys. 354B, (1991) 711Google Scholar
  10. [10]
    R. Dijkgraaf, talk on RIMS conference “Infinite dimensional analisis”, July,1993Google Scholar
  11. [11]
    K.Saito, Publ.RIMS, Kyoto Univ. 19 (1983) 1231Google Scholar
  12. [12]
    S.Checotti and C.Vafa,Nucl.Phys 367B (1991) 359Google Scholar
  13. [13]
    C. Vafa, Mod. Phys.Lett. A6 (1990) 337Google Scholar
  14. [14]
    E.Witten,Mirror Manifolds And Topological Field Theory,in S.-T.Yau,ed., Essays On Mirror Manifolds (International Press, 1992)Google Scholar
  15. [15]
    A.Losev,Descendants Constructed From Matter Fields And K. Saito Higher Residue Pairing In Topological L-G Theories Coupled To Topological Gravity, preprint TPI-MINN-40T (May,1992); A.Losev, TMP(Teoreticheskaya i matematicheskaya Fizika,in English)vol.95,n.2(1993) 307Google Scholar
  16. [16]
    T.Eguchi et al, Topological Strings, Flat Coordinates And Gravitational Descendants, University of Tokyo preprint UT 630, Febr.1993Google Scholar
  17. [17]
    B.Dubrovin, Nucl. Phys. 379B (1992) 627Google Scholar
  18. [18]
    E.Witten, Comm.Math.Phys. 117 (1988)353Google Scholar
  19. [19]
    C.Vafa, in Essays on Mirror Manifolds,ed. by S.T.Yau,International Press, 1992Google Scholar
  20. [20]
    L.Alvarez-Gaume et al.,Nucl.Phys. B303 (1988) 455Google Scholar
  21. [21]
    J.Distler and P.Nelson, Comm.Math.Phys. 138 (1991) 273Google Scholar
  22. [22]
    A.Losev and I.Polyubin On connection between Landau Ginzburg gravity and integrable theories, hepth 9305079.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • A. Losev
    • 1
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations