Skip to main content

Computing the L 1-diameter and center of a simple rectilinear polygon in parallel

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 824))

Abstract

The diameter of a set 5 of points is the maximal distance between a pair of points in S. The center of S is the set of points that minimise the distance to their furthest neighbours. The problem of finding the diameter and center of a simple polygon with n vertices for different distance measures has been studied extensively in recent years. There are algorithms that run in linear time if the geodesic Euclidean metric is used and O(n log n) time if the link metric is used.

In this paper we consider the L 1-metric inside a simple rectilinear polygon P, i.e. the distance between two points in P is defined as the length of a shortest rectilinear path connecting them. We give an O(log n) time algorithm to compute the L 1-diameter and center on a EREW-PRAM with n/log n processors if a triangulation of the polygon is provided.

This work was supported by the Deutsche Forschungsgemeinschaft under Grant No. Ot 64/8-1.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Chandru, S.K. Ghosh, A. Maheshwari, V. T. Rajan, and S. Saluja. NC-Algorithms for Minimum Link Paths and Related Problems. TR, Tata Institute of Fundamental Research, Bombay, 1992.

    Google Scholar 

  2. Bernard Chazelle. Triangulating a simple polygon in linear time. In Proc. 31st IEEE Symp. on Foundations of Computer Science, pages 220–230, 1990.

    Google Scholar 

  3. K.L. Clarkson, R. Cole, and R.E. Tarjan. Randomized parallel algorithms for trapezoidal decomposition. In Proc. 7th ACM Symp. on Computational Geometry, pages 152–161, 1991.

    Google Scholar 

  4. H.N. Djidjev, A. Lingas, and J.-R. Sack. An O(n log n) algorithm for computing the link center of a simple polygon. Discrete and Computational Geometry, 8:131–152, 1992.

    Google Scholar 

  5. S.K. Ghosh and A. Maheshwari. Parallel Algorithms for All Minimum Link Paths and Link Center Problems. In O. Nurmi, E. Ukkonnen, editors, Proc. 3rd Scand. Workshop on Algorithm Theory, pages 106–117, LNCS 621, 1992.

    Google Scholar 

  6. M.T. Goodrich. Triangulating a polygon in parallel. Journal of Algorithms, 10:327–351, 1989.

    Article  Google Scholar 

  7. M.T. Goodrich, S.B. Shauck, and S. Guha. Parallel methods for visibility and shortest path problems in simple polygons. In Proc. 7th ACM Symp. on Computational Geometry, pages 73–82, 1991.

    Google Scholar 

  8. J. Hershberger. Optimal parallel algorithms for triangulated simple polygons. In Proc. 8th ACM Symp. on Computational Geometry, pages 33–42, 1992.

    Google Scholar 

  9. J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

    Google Scholar 

  10. J.Hershberger and S. Suri. Matrix searching with the shortest path metric. In 25th ACM Symp. on Theory of Computing, pages 485–494, 1993.

    Google Scholar 

  11. Yan Ke. An efficient algorithm for link-distance problems. In Proc. 5th Symp. on Computational Geometry, pages 69–78, 1989.

    Google Scholar 

  12. W. Lenhart, R. Pollack, J. Sack, R. Seidel, M. Sharir, S. Suri, G. Toussaint, S. Whitesides, and C. Yap. Computing the link center of a simple polygon. Discrete and Computational Geometry 3:281–293.

    Google Scholar 

  13. Christos Levcopoulos. Heuristics for Minimum Decompositions of Polygons. PhD thesis, University of Linköping, Linköping, Sweden, 1987.

    Google Scholar 

  14. A. Lingas, A. Maheshwari, and J.-R. Sack. Optimal parallel algorithms for rectilinear link distance problems. Algorithmica, to appear.

    Google Scholar 

  15. K. M. McDonalds and I. G. Peters. Smallest paths in simple rectilinear polygons. IEEE Transactions on Computer-Aided Design, 11(7):864–875, 1992.

    Google Scholar 

  16. B. J. Nilsson and S. Schuierer. Computing the rectilinear link diameter of a polygon. In H. Bieri, editor, Proc. Workshop on Computational Geometry, pages 203–216, LNCS 553, 1991.

    Google Scholar 

  17. B.J. Nilsson and S. Schuierer. An optimal algorithm for the rectilinear link center of a rectilinear polygon. In N. Santoro F. Dehne, J.-R. Sack, editor, Proc. 2nd Workshop on Algorithms and Datastructures, pages 249–260, LNCS 519, 1991.

    Google Scholar 

  18. R. Pollack, M. Sharir, and G. Rote. Computing the geodesic center of a simple polygon. Discrete and Computational Geometry, 4(6):611–626, 1989.

    Google Scholar 

  19. S. Schuierer. An Optimal Algorithm to Compute the L 1-Diameter and Center of a Simple Rectilinear Polygon. Technical Report 49, Institut für Informatik, Universität Freiburg, 1994.

    Google Scholar 

  20. M. van de Vel. Theory of Convex Structures. Mathematical Library, North-Holland, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erik M. Schmidt Sven Skyum

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schuierer, S. (1994). Computing the L 1-diameter and center of a simple rectilinear polygon in parallel. In: Schmidt, E.M., Skyum, S. (eds) Algorithm Theory — SWAT '94. SWAT 1994. Lecture Notes in Computer Science, vol 824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58218-5_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-58218-5_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58218-2

  • Online ISBN: 978-3-540-48577-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics