Advertisement

Towards efficient calculi for resource-oriented deductive planning

  • Stefan Brüning
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 822)

Abstract

An important advantage of deductive approaches for solving planning problems is the possibility to exploit powerful proof methods and techniques to reduce the search space developed in the field of automated deduction. The aim of this paper is to adapt such techniques to build efficient resource-oriented planning systems.

Keywords

Planning Problem Linear Connection Initial Situation Planning Step Proof State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. L. Astrachan and M. E. Stickel. Caching and Lemmaizingin Model Elimination Theorem Provers. In Proceedings of the Conference on Automated Deduction, pages 224–238. Springer, 1992.Google Scholar
  2. 2.
    W. Bibel. A deductive solution for plan generation. New Generation Computing, 4:115–132, 1986.Google Scholar
  3. 3.
    W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig, 1987.Google Scholar
  4. 4.
    W. Bibel. Deduction: Automated Logic. Academic Press, London, 1993.Google Scholar
  5. 5.
    R. N. Bol, K. R. Apt, and J. W. Klop. An analysis of loop checking mechanisms for logic programming. Theoretical Computer Science, 86:35–79, 1991.Google Scholar
  6. 6.
    S. Brüning. On Loop Detection in Connection Calculi. In Proceedings of the Kurt Gödel Colloquium, pages 144–151. Springer Verlag, 1993.Google Scholar
  7. 7.
    S. Brüning. Towards Efficient Calculi for Resource-Oriented Linear Deductive Planning. Technical report, FG Intellektik, FB Informatik, TH Darmstadt, 1993.Google Scholar
  8. 8.
    S. Brüning, G. Große, S. Hölldobler, J. Schneeberger, U. Sigmund, and M. Thielscher. Disjunction in plan generation by equational logic programming. In Beiträge zum 7. Workshop Planen und Konfigurieren, pages 18–26. Arbeitspapiere der GMD 723, January 1993.Google Scholar
  9. 9.
    R. Feldman and P. Morris. Admissible Criteria For Loop Control In Planning. In Proceedings of the Eigth National Conference on Artificial Intelligence, pages 151–157, 1990.Google Scholar
  10. 10.
    R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 5(2):189–208, 1971.Google Scholar
  11. 11.
    B. Fronhöfer and R. Caferra. Memorization of literals: An enhancement of the connection method. Technical report, Institut für Informatik, TU München, 1988.Google Scholar
  12. 12.
    C. Green. Application of theorem proving to problem solving. In Proceedings of IJCAI 1969, pages 741–747, 1969.Google Scholar
  13. 13.
    G. Große, S. Hölldobler, and J. Schneeberger. On linear deductive planning. Technical Report AIDA-92-08, FG Intellektik, FB Informatik, TH Darmstadt, 1992.Google Scholar
  14. 14.
    Gerd Große, Steffen Hölldobler, Josef Schneeberger, Ute Sigmund, and Michael Thielscher. Equational Logic Programming, Actions, and Change. In Proc. Joint International Conference and Symposium on Logic Programming JICSLP'92, 1992.Google Scholar
  15. 15.
    S. Hölldobler and J. Schneeberger. A new deductive approach to planning. New Generation Computing, 8:225–244, 1990.Google Scholar
  16. 16.
    R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO — A High-Performance Theorem Prover for First-Order Logic. JAR, 8:183–212, 1992.Google Scholar
  17. 17.
    V. Lifschitz. On the semantics of STRIPS. In Proc. of the Workshop on Reasoning about Actions and Plans, pages 1–8, Los Altos, 1986. Morgan Kaufmann.Google Scholar
  18. 18.
    M. Masseron, C. Tollu, and J. Vauzielles. Generating plans in linear logic. In Foundations of Software Technology and Theoretical Computer Science, pages 63–75. Springer, LNCS 472, 1990.Google Scholar
  19. 19.
    S. Thiébaux and J. Hertzberg. A semi-reactive planner based on a possible models action formalization. In Artificial Intelligence Planning Systems: Proceedings of the First International Conference (AIPS92), San Mateo, CA, 1992. Morgan Kaufmann.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Stefan Brüning
    • 1
  1. 1.FG Intellektik, FB InformatikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations