Skip to main content

On the cutting edge of relativization: The resource bounded injury method

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 820))

Included in the following conference series:

Abstract

In this paper we construct an oracle A such that NEXP AP ε A. For the construction of this oracle we present a new variation on the finite injury priority method that we call the resource bounded injury method. As a corollary we obtain an oracle A such that Sewelsons conjecture fails, i.e. EXP A=NEXP AEXP NP A, via a direct construction that does not make use of information theoretical lower bounds.

also supported by the Netherlands Organization for Scientific Research (NWO) and ESPRIT Basic Research Actions Program of the EC (under contract No. 7141 (project ALCOM II).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arora, R. Impagliazzo, and U. Vazirani. On the role of the Cook-Levin theorem in complexity theory. manuscript, 1193.

    Google Scholar 

  2. J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. Springer-Verlag, 1988.

    Google Scholar 

  3. C. Bennett and J. Gill. Relative to a random oracle A, PA≠NPA ≠ Co-NPA with probability 1. SIAM J. Comput., 10(1):96–113, February 1981.

    Google Scholar 

  4. S.R. Buss and L. Hay. On truth-table reducibility to SAT. Information and Computation, 90(2):86–102, February 1991.

    Google Scholar 

  5. M.I. Dekhtyar. On the relation of deterministic and nondeterministic complexity classes. In Proceedings Mathematical Foundations of Computer Science, Lecture Notes in Computer Science vol. 45, pages 282–287, Berlin, 1977. Springer-Verlag.

    Google Scholar 

  6. S. Fenner, L. Fortnow, and S.A. Kurtz. The isomorphism conjecture holds relative to an oracle. In Proc. 33rd IEEE Symposium Foundations of Computer Science, pages 30–39, 1992.

    Google Scholar 

  7. B. Fu, H. Li, and Y. Zhong. Some properties of exponential time complexity classes. In Proc. Structure in Complexity Theory seventh annual conference, pages 50–57. IEEE computer society press, 1992.

    Google Scholar 

  8. R.M. Friedberg. Two recursively enumerable sets of incomparable degrees of unsolvability. In Proc. Nat. Acad. Sci., volume 43, pages 236–238, 1957.

    Google Scholar 

  9. Hans Heller. On relativized polynomial and exponential computations. SIAM J. Comput, 13(4):717–725, november 1984.

    Google Scholar 

  10. Hans Heller. On relativized exponential and probabilistic complexity classes. Information and Control., 71(3):231–243, December 1986.

    Google Scholar 

  11. L. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer and System Sciences, 39(3):299–322, 1989.

    Google Scholar 

  12. J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP-P: EXPTIME versus NEXPTIME. Information and Control, 65(2/3):158–181, May/June 1985.

    Google Scholar 

  13. J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Trans. Amer. Math. Soc., 117:285–306, 1965.

    Google Scholar 

  14. R. Impagliazzo and G. Tardos. Decision versus search problems in superpolynomial time. In Proc. 30th IEEE Symposium on Foundations of Computer Science, pages 222–227, 1989.

    Google Scholar 

  15. K. Ko. Distinguishing conjunctive and disjunctive reducibilities by sparse sets. Information and Computation, 81:62–87, 1989.

    Google Scholar 

  16. Stuart A. Kurtz. On the random oracle hypothesis. Information and Control, 57(1):40–47, April 1983.

    Google Scholar 

  17. S. Mocas. Using bounded query classes to separate classes in the exponential time hierarchy. To appear in proceedings of the 9th structure in complexity theory conference, 1994.

    Google Scholar 

  18. A.A. Muchnik. On the unsolvability of the problem of reducibility in the theory of algorithms. Dokl. Acad. Nauk SSSR, 108:194–197, 1956.

    Google Scholar 

  19. V. Sewelson. A study of the Structure of NP. PhD thesis, Cornell University, Ithaca. New York 14853, August 1983. TR83-575.

    Google Scholar 

  20. J.I. Seiferas, M.J. Fischer, and A.R. Meyer. Separating nondeterministic time complexity classes. J. ACM, 25(1):146–167, January 1978.

    Google Scholar 

  21. A. Shamir. IP=PSPACE. Journal of the ACM, 4:869–877, October 1992.

    Google Scholar 

  22. Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer-Verlag, 1987.

    Google Scholar 

  23. L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22, 1976.

    Google Scholar 

  24. L. Torenvliet and P. Van Emde Boas. Diagonalisation methods in a polynomial setting. In Proc. Structure in Complexity Theory, Lecture Notes in Computer Science vol. 223, pages 331–334, Berlin, 1986. Springer-Verlag.

    Google Scholar 

  25. S. Zák. A Turing machine hierarchy. Theoretical Computer Science, 26:327–333, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Serge Abiteboul Eli Shamir

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buhrman, H., Torenvliet, L. (1994). On the cutting edge of relativization: The resource bounded injury method. In: Abiteboul, S., Shamir, E. (eds) Automata, Languages and Programming. ICALP 1994. Lecture Notes in Computer Science, vol 820. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58201-0_74

Download citation

  • DOI: https://doi.org/10.1007/3-540-58201-0_74

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58201-4

  • Online ISBN: 978-3-540-48566-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics