Observing far-infrared and submillimeter continuum emission

  • J. P. Emerson
Part II. Techniques in Infrared and mm-Wave Astronomy
Part of the Lecture Notes in Physics book series (LNP, volume 431)


Observational techniques in far-IR (space and airborne) and submm (ground based) continuum astronomy are discussed with emphasis on general observational issues rather than on the detailed workings of instruments. Instruments are treated as black boxes whose characteristics must be well known by the observer, or user of data from the instrument. The material is aimed at an astrophysicist unfamiliar with observing in this wavelength region and wanting to understand the operation and limitations of, and so make optimum use of, the capabilities of available instrumentation. The difficulties involved in making such observations are pointed out, and some guidance given on how to deal with them.


Maximum Entropy Method Precipitable Water Vapour Atmospheric Transmission Noise Equivalent Power Effective Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, F.C., Emerson, J.P. & Fuller, G.A.: Submillimeter photometry and disk masses of T Tauri disk systems. ApJ 357 (1990) 606–620Google Scholar
  2. Ade, P.A.R., Griffin, M.J., Cunningham, C.T., Radostitz, J.V., Predko, S. & Nolt, I.G.: The Queen Mary College/University of Oregon photometer for submillimetre continuum observations. Infrared Phys. 24 (1984) 403–415Google Scholar
  3. Airy, G.B.: Trans. Camb. Phil. Soc. 5 (1835) 283-Google Scholar
  4. Arams, F.R.: Infrared-to-millimeter wavelength detectors, Artech House (1973)Google Scholar
  5. Aumann, H.H., Fowler, J.W. & Melnyk, M.: A maximum correlation method for image construction of IRAS survey data. AJ 99 (1990) 1674–1681Google Scholar
  6. Bontekoe, T.R., Kester, D.J.M., Price, S.D., de Jonge, A.R.W. & Wesselius, P.R.: Image construction from the IRAS survey. A&A 248 (1991) 328–336Google Scholar
  7. Butner, H.M., Evans, N.J., Lester, D.F., Levreault, R.M. & Strom, S.E.: Testing models of Low-Mass Star Formation: High-resolution far-infrared observations of L1551 IRS 5. ApJ 376 (1991) 636–653Google Scholar
  8. Clemens, D.P., Leach, R.W., Barvainis, R. & Kane, B,D.: Millipol, a Millimeter & Submillimeter wavelength Polarimeter: Instrument, Operation and Calibration. PASP 102 (1990) 1064–1076Google Scholar
  9. Danese, L., & Partridge R.B.: Atmospheric Emission Models: Confrontation between Observational Data and Predictions in the 2.5–300 GHz range. ApJ 342 (1989) 604–615Google Scholar
  10. Duncan, W.D., Robson, E.I., Ade, P.A.R., Griffin, M.J.& Sandell, G.: A millimeter/submillimetre common user photometer for the James Clerk Maxwell Telescope. MNRAS 243 (1990) 126–132Google Scholar
  11. Emerson, D.T., Klein, U. & Haslam, C.G.T.: A Multiple Beam Technique for Overcoming Atmospheric Limitations to Single-Dish Observations of Extended Sources. A&A 76 (1979) 92–105Google Scholar
  12. Emerson, J.P.: Infrared Emission Processes. In: Dupree A.K. & Lago M.T.V.T. (eds.) Formation & Evolution of Low Mass Stars Kluwer (1988a) 21–44Google Scholar
  13. Emerson, J.P.: IRAS Observations. In: Dupree A.K. & Lago M.T.V.T. (eds.) Formation & Evolution of Low Mass Stars Kluwer (1988b) 193–207Google Scholar
  14. Erickson, E.: SOFIA: Stratospheric Observatory for Infrared Astronomy, Sp.Sci.Rev. 61 (1992) 61–68Google Scholar
  15. Erickson, E., & Werner, M.: SIRTF: Space Infrared Telescope Facility, Sp.Sci.Rev. 61 (1992) 95–98Google Scholar
  16. Fazio, G.: Infrared Astronomy. In: Avrett, E.H. (ed.) Frontiers of Astrophysics. Harvard Univ Press (1976) 203–258Google Scholar
  17. Fazio, G., ed.: Infrared & Submillimeter Astronomy. Astrophysics & Space Science Library 63, Reidel (1977)Google Scholar
  18. Flett, A.M., & Murray, A.G.: First results from a submillimetre polarimeter on the James Clerk Maxwell Telescope. MNRAS 249 (1991) 4P–6PGoogle Scholar
  19. Gautier, T.N., Boulanger, F., Perault, M. & Puget, J.L.: A calculation of confusion noise due to infrared cirrus. AJ 103 (1992) 1313–1324Google Scholar
  20. Gonatas, D.P, Engargiola, G.A., Hildebrand, R.H., Platt, S.R., Wu, X.D., Davidson, J.A., Novak, G., Aitken, D.K. & Smith C.: The far-Infrared Polarization of the Orion Nebula. ApJ 357 (1990) 132–137Google Scholar
  21. Haller, E.E.: Physics and Design of Advanced IR Bolometers and Photoconductors. Infrared Physics. 25 (1985) 257–266Google Scholar
  22. Harvey, P.M.: A Far-Infrared Photometer for the Kuiper Airborne Observatory. PASP 91 (1979) 143–148Google Scholar
  23. Hayashi, M.: Plans for Submillimetre and Infrared Satellites in Japan, Sp.Sci.Rev. 61 (1992) 99–102Google Scholar
  24. Helou, G. & Beichman C.A.: The confusion limits to the sensitivity of submillimeter telescopes. In: 29th Liege Ap Colloquium, From Ground Based to Space Borne submm astronomy. European Space Agency, ESA SP-314 (1990)Google Scholar
  25. Hildebrand, R.H.: Focal plane optics in far-infrared and submillimetre astronomy. Optical Engineering 25 (1986) 323–329Google Scholar
  26. Hildebrand, R.H.: Magnetic Fields and Stardust. QJRAS 29 (1988) 327–351Google Scholar
  27. Hills, R.: Jupiter's ring. JCMT-UKIRT newsletter No. 4 (1992) 24–26Google Scholar
  28. IRAS Science team, Beichman, C.A., Neugebauer, G., Habing, H.J., Clegg, P.E. & Chester, T.J. eds.: IRAS Catalogs and Atlases, 1, Explanatory Supplement. NASA-RP-1190 (1988)Google Scholar
  29. Kaplan, M.: NASA's plans for Space Astronomy & Astrophysics, Sp.Sci.Rev. 61 (1992) 103–112Google Scholar
  30. Keene, J., Hildebrand, R.H., Whitcomb, S.E. & Winston, R.: Compact infrared heat trap field optics. Applied Optics 17 (1978) 1107–1109Google Scholar
  31. Kessler, M.F., Metcalfe, L., & Salama, A.: The Infrared Space Observatory, Sp Sci.Rev. 61 (1992) 45–60Google Scholar
  32. Keyes, R.J. ed.: Optical and Infrared Detectors, Springer (1977)Google Scholar
  33. Kittel, C.: Photon Fluctuations. In: Thermal Physics John Wiley & sons 1st. edn. (1969) 260–262Google Scholar
  34. Kraus, J.D.: Radio Astronomy. McGraw Hill (1966) 244–246Google Scholar
  35. Kreysa, E.: In: 29th Liege Ap Colloquium, From Ground Based to Space Borne submm astronomy. European Space Agency, ESA SP-314 (1990)Google Scholar
  36. Kyle, T.G., & Goodman A.: Atlas of Computed Infrared Atmospheric Absorption Spectra, National Center for Atmospheric Research, NCAR-TN/STR-112 (1975)Google Scholar
  37. Leach, R.W, Clemens, D.P., Kane B.D., & Barvainis R.: Polarimetric mapping of Orion using Millipol: Magnetic Activity in BN/KL. ApJ 370 (1991) 257–262Google Scholar
  38. Lester, D.F., Harvey, P.M. & Joy, M.: The spatial structure of IRC+10216 and NGC7027 in the Far-Infrared. ApJ 304 (1986) 623–633Google Scholar
  39. Lewis, W.B.: Fluctuations in streams of thermal radiation. Proc. Phys. Soc. (London) 59 (1947) 34–40Google Scholar
  40. Liege, 29th Ap Colloquium, From Ground Based to Space Borne submm astronomy. European Space Agency, ESA SP-314 (1990)Google Scholar
  41. Low, F.J.: Low-Temperature Germanium Bolometer, J.Opt.Soc.Am. 51 (1961) 1300–1304Google Scholar
  42. Low, F. and Rieke G.H.: The Instrumentation and Techniques of Infrared Photometry. In: N. Carleton (ed.), Methods of Experimental Physics, 12, Astrophysics, Part A, Optical and Infrared. Academic Press (1974) 415–462Google Scholar
  43. Mandl, F: Statistical Physics, John Wiley 2nd Edn. (1988) p. 271 and 312Google Scholar
  44. Marston, A.P.: High-Resolution Far-Infrared Images of M83, AJ 98 (1989) 1572–1580Google Scholar
  45. Marten, A., Baluteau, J.P. & Bussolletti, E.: High Resolution Infrared Spectra of the Earth's Atmosphere — I. Numerical Simulation of Atmospheric Spectra. Infrared Physics 17 (1977) 197–209Google Scholar
  46. Mather, J.C.: Bolometer noise: nonequilibrium theory. Applied Optics 21 (1982) 1125–1129Google Scholar
  47. McClatchey, R.A., Benedict, W.S., Clough,S.A., Burch, D.E., Calfee, R.F., Fox, K., Rothman, L.S., & Garing, J.S.: AFCRL Atmospheric Absorption Line Parameters Compilation. Air Force Cambridge Research Laboratories AFCRL-TR-73-0096 (1973)Google Scholar
  48. Naylor, D.A., Clark, T.A., Schultz, A.A. & Davis, G.R.: Atmospheric transmission at submillimete wavelengths from Mauna Kea. MNRAS 251 (1991) 199–202Google Scholar
  49. Padman, R. & Prestage R. Digital demodulation and fast sampling with UKT14. JCMT-UKIRT newsletter No. 3 (1992) 19–22Google Scholar
  50. Phillips, T.G.: Techniques of submillimeter astronomy. In: Wolstencroft R.D. & Burton W.B. (eds.), Millimetre and Submillimetre Astronomy, Kluwer (1988) 1–25Google Scholar
  51. Platt, S.R., Hildebrand, R.H., Pernic, R.J., Davidson, J.A. & Novak, G.: 100μm Array Polarimetry from the Kuiper Airborne Observatory: Instrumentation, Techniques, and First Results. PASP 103 (1991) 1193–1210Google Scholar
  52. Purcell, E.M.: Nature 178 (1956) 1449–1450Google Scholar
  53. Richer, J.S.: Dual beam mapping with a maximum entropy algorithm MNRAS 254 (1992) 165–176Google Scholar
  54. Shaver, P.A. ed.: ESO-IRAM-Onsala workshop on (Sub)Millimetre astronomy. ESO Conference and Workshop Proceedings 22 (1985)Google Scholar
  55. Soifer, B.T. & Pipher, J.L.: Instrumentation for Infrared Astronomy. ARA&A 16 (1978) 335–369Google Scholar
  56. Sollner, G.: Frequency Spectrum of Fluctuations in Submillimetre Sky Emission and Absorption. A&A 55 (1977) 361–368Google Scholar
  57. Traub, W.A., & Stier, M.T.: Theoretical atmospheric transmission in the mid-and far-infrared at four altitudes. Applied Optics 15 (1976) 364–377Google Scholar
  58. van Vliet, K.M.: Noise limitations in solid state photodetectors: Applied Optics 6 (1967) 1145–1168Google Scholar
  59. Watt, G.D. & Webster A.S. eds.: Submillimetre Astronomy. Kluwer (1990)Google Scholar
  60. Welch, W.J.: Techniques and Results of Millimeter Interferometry. In: Wolstencroft R.D. & Burton W.B. (eds.), Millimetre and Submillimetre Astronomy, Kluwer (1988) 95–116Google Scholar
  61. Welch, W.J.: Millimeter and Submillimeter Interferometry. In: Watt G.D. & Webster A.S. (eds.) Submillimetre Astronomy, Kluwer (1990) 81–86Google Scholar
  62. Whitcomb, S.E., Hildebrand, R.H. & Keene J.: An f/35 submillimeter photometer for the NASA Infrared Telescope Facility. PASP 92 (1980) 863–869Google Scholar
  63. Whitcomb, S.E., & Keene J.: Low-pass interference filters for submillimeter astronomy. Applied Optics 19 (1980) 197–198Google Scholar
  64. White, G.J.: Receiver Technology. in Millimetre and Submillimetre Astronomy, eds. Wolstencroft R.D. & Burton W.B., Kluwer (1988) 27–94Google Scholar
  65. Willardson, R.K., & Beer A.C. eds.: Semiconductors and Metals 5 IR Detectors, Academic Press (1970)Google Scholar
  66. Willardson, R.K., & Beer A.C. eds.: Semiconductors and Metals 12 IR Detectors II, Academic Press (1977)Google Scholar
  67. Winston, R.: Cone collectors for finite sources. Applied Optics 17 (1978) 688–689Google Scholar
  68. Wolstencroft, R. & Burton W.B. eds: Millimetre and Submillimetre Astronomy. Kluwer (1988)Google Scholar
  69. Woody, D.P., Scott, S.L., Scoville, N.S., Mundy, L.G., Sargent, A.I., Padin, S., Tinney, C.G. & Wilson, C.D.: Interferometric Observations of 1.4mm continuum sources. ApJ 337 (1989) L41–L44Google Scholar
  70. Wynn-Williams, C.G., & Becklin, E.E. (eds.): Infrared Astronomy with Arrays. Univ. of Hawaii, Institute for Astronomy (1987).Google Scholar
  71. Zylka, R., Mezger, P.G. & Leasch, H.: Anatomy of the Sagittarius A complex: II λ1300μm and λ870μm continuum observations of Sgr A* and its submm/IR spectrum. A&A (1993 in pressGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. P. Emerson
    • 1
  1. 1.Department of Physics Queen Mary & Westfield CollegeUniversity of LondonLondonUK

Personalised recommendations