Skip to main content

Hydrodynamical simulations of the solar dynamo

  • Part II Generation of Large-Scale Magnetic Fields
  • Conference paper
  • First Online:
Advances in Solar Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 432))

Abstract

Hydrodynamic simulations of the solar convection zone can be used to model the generation of differential rotation and magnetic fields, and to determine mean-field transport coefficients that are needed in mean-field models. The importance of the overshoot layer beneath the solar convection zone is discussed: it is the place where the magnetic field accumulates, although most of the field regeneration can still occur in the convection zone proper. We also discuss how systematically oriented bipolar regions can emerge from the convection zone where the magnetic field is highly intermittent.

The National Center for Atmospheric Research is sponsored by the National Science Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belvedere, G., Proctor, M. R. E., Lanzafame, G. (1991): “The latitude belts of solar activity as a consequence of a boundary-layer dynamo”, Nature 350, 481–483

    Article  Google Scholar 

  • Bertozzi, A. L., Chhabra, A. B., Kadanoff, L. P., Ott, E., Vainshtein, S. I. (1993): On dynamo generation of magnetic flux and fractal properties of the field. (preprint).

    Google Scholar 

  • Brandenburg, A. (1992): “Energy spectra in a model for convectioe turbulence”, Phys. Rev. Lett. 69, 605–608

    Article  PubMed  Google Scholar 

  • Brandenburg, A., Nordlund, Å., Pulkkinen, P., Stein, R.F., Tuominen, I. (1990): “3-D Simulation of turbulent cyclonic magneto-convection”, Astron. Astrophys. 232, 277–291

    Google Scholar 

  • Brandenburg, A., Jennings, R. L., Nordlund, Å., Stein, R. F., Tuominen, I. (1991a): The role of overshoot in solar activity: A direct simulation of the dynamo in The Sun and cool stars: activity, magnetism, dynamos, ed. by I. Tuominen, D. Moss & G. Rüdiger (Lecture Notes in Physics 380, Springer-Verlag) pp.86–88

    Google Scholar 

  • Brandenburg, A., Jennings, R. L., Nordlund, Å., Stein, R.F. (1991b): Magnetic flux tubes as coherent structures in Spontaneous formation of space-time structures and criticality, ed. by T. Riste & D. Sherrington (Nato ASI Series) pp.371–374

    Google Scholar 

  • Brandenburg, A., Jennings, R. L., Nordlund, Å., Rieutord, M., Stein, R. F., Tuominen, I. 1993a Magnetic structures in a dynamo simulation. J. Fluid Mech. (submitted).

    Google Scholar 

  • Brandenburg, A., Krause, F., Nordlund, Å., Ruzmaikin, A. A., Stein, R.F., Tuominen, I. 1993b On the magnetic fluctuations produced by a large scale magnetic field. Astrophys. J. (submitted).

    Google Scholar 

  • Cattaneo, F., Vainshtein, S. I. (1991): “Suppression of turbulent transport by a weak magnetic field”, Astrophys. J. 376, L21–L24

    Google Scholar 

  • Childress, S. (1979): “Alpha-effect in flux ropes and sheets”, Phys. Earth Planet. Int. 20, 172–180

    Article  Google Scholar 

  • Frisch, U., Pouquet, A., Léorat, J., Mazure, A. (1975): “Possibility of an inverse cascade of magnetic helicity in hydrodynamic turbulence”, J. Fluid Mech. 68, 769–778

    Google Scholar 

  • Kitchatinov, L. L., Rüdiger, G. (1992): “Magnetic-field advection in inhomogeneous turbulence”, Astron. Astrophys. 260, 494–498

    Google Scholar 

  • Kitchatinov, L. L. & Rudiger, G. (1993): (in preparation)

    Google Scholar 

  • Krause, F. (1967): Eine Lösung des Dynamoproblems auf der Grundlage einer linearen Theorie der magnetohydrodynamischen Turbulenz, (Habilitationsschrift, University of Jena)

    Google Scholar 

  • Krause, F., Rädler, K.-H. (1980): Mean-Field Magnetohydrodynamics and Dynamo Theory, (Akademie-Verlag, Berlin)

    Google Scholar 

  • Kleeorin, N. I., Rogachevskii, I. V., Ruzmaikin, A. A. (1990): “Magnetic force reversal and instability in a plasma with advanced magnetohydrodynamic turbulence”, Sov. Phys. JETP 70, 878–883

    Google Scholar 

  • Küker, M., Rüdiger, G., Kitchatinov, L. L. 1993 An αΩ-model of the solar differential rotation. Astron. Astrophys. (in press).

    Google Scholar 

  • Moffatt, H. K. (1961): “The amplification of a weak magnetic applied magnetic field by turbulence in fluids of moderate conductivity”, J. Fluid Mech. 11, 625–635

    Google Scholar 

  • Nordlund, Å., Brandenburg, A., Jennings, R. L., Rieutord, M., Ruokolainen, J., Stein, R. F., Tuominen, I. (1992): “Dynamo action in stratified convection with overshoot”, Astrophys. J. 392, 647–652

    Article  Google Scholar 

  • Nordlund, Å. et al. (1993): (in preparation)

    Google Scholar 

  • Ott, E., Du, Y., Sreenivasan, K. R., Juneja, Å. & Suri, A. K. (1992): “Sign-singular measures: fast magnetic dynamos, and high-Reynolds-number fluid turbulence”, Phys. Rev. Lett. 69, 2654–2657

    Article  PubMed  Google Scholar 

  • Perkins, F. W., Zweibel, E. G. (1987): “A high magnetic Reynolds number dynamo”, Phys. Fluids 30, 1079–1084

    Article  Google Scholar 

  • Petrovay, K., Szakily, G. (1993): “The origin of intranetwork fields: a small-scale solar dynamo”, Astron. Astrophys. 274, 543–554

    Google Scholar 

  • Pouquet, A., Frisch, U., Léorat, J. (1976): “Strong MHD helical turbulence and the nonlinear dynamo effect”, J. Fluid Mech. 77, 321–354

    Google Scholar 

  • Rieutord, M. et al. 1993 Reynolds stress and differential rotation in Boussinesq convection in a rotating spherical shell. Astron. Astrophys. (to be submitted).

    Google Scholar 

  • Roberts, P. H., Soward, Å. M. (1975): “A unified approach to mean field electrodynamics”, Astron. Nachr. 296, 49–64

    Google Scholar 

  • Rüdiger, G., Kitchatinov, L. L. (1993): “Alpha-effect and alpha-quenching”, Astron. Astrophys. 269, 581–588

    Google Scholar 

  • Rüdiger, G., Brandenburg, Å. 1993 Å. solar dynamo in the overshoot layer: cycle period and butterfly diagram. Astrophys. J. (submitted).

    Google Scholar 

  • Schmitt, D. (1987): “An αω-dynamo with an a-effect due to magnetostrophic waves”, Astron. Astrophys. 174, 281–287

    Google Scholar 

  • Schmitt, D. (1993): (this volume)

    Google Scholar 

  • Steenbeck, M., Krause, F., Rädler, K.-H. (1966): “Berechnung der mittleren Lorentz-Feldstärke \(\overline {v \times B}\) für ein elektrisch leitendendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung”, Z. Naturforsch. 21a, 369–376

    Google Scholar 

  • Vainshtein, S. I., Cattaneo, F. (1992): “Nonlinear restrictions on dynamo action”, Astrophys. J. 393, 165–171

    Article  Google Scholar 

  • Yoshimura, H. (1975): “A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone”, Astrophys. J. Suppl. 29, 467–494

    Article  Google Scholar 

  • Zeldovich, Ya. B., Ruzmaikin, Å. A., Sokoloff, D. D. (1983): Magnetic fields in Astrophysics, (Gordon & Breach, New York)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Belvedere M. Rodonò G. M. Simnett

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Brandenburg, A. (1994). Hydrodynamical simulations of the solar dynamo. In: Belvedere, G., Rodonò, M., Simnett, G.M. (eds) Advances in Solar Physics. Lecture Notes in Physics, vol 432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58041-7_203

Download citation

  • DOI: https://doi.org/10.1007/3-540-58041-7_203

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58041-6

  • Online ISBN: 978-3-540-48420-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics