Skip to main content

Linear domains and linear maps

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 802))

Abstract

We study the symmetric monoidal closed category LIN of linear domains. Its objects are inverse limits of finite, bounded complete posets with respect to projection-embedding pairs preserving all suprema. The full reflective subcategory LL of linear lattices is a denotational model of linear logic; the negation is A ↦ A op and !(A) is the lattice of all Scott-closed sets of A. The Scott-continuous function space [A → B] models intuitionistic implication. Prime-algebraic lattices are linear and ℘ equals ⊗ for these lattices; in general, ℘ ≠ ⊗ in LL. Distributive, linear domains are exactly the prime-algebraic ones.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abramsky Domain theory in logical form, in: Annals of Pure and Applied Logic 51, pp. 1–77, 1991

    Google Scholar 

  2. J. Adámek, H. Herrlich and G. Strecker Abstract And Concrete Categories, J. Wiley & Sons, Inc., 1990

    Google Scholar 

  3. B. Banaschewski and E. Nelson Tensor Products And Bimorphisms, Canad. Math. Bull., vol. 19 (4), pp. 385–402, 1976

    Google Scholar 

  4. M. Barr Autonomous categories, Springer Lecture Notes in Mathematics, SLNM 752, 1979

    Google Scholar 

  5. G. Birkhoff Lattice Theory, American Mathematical Society Colloquium Publications, volume 25, third edition, third printing, reprinted with corrections, 1984

    Google Scholar 

  6. P.-L. Curien Categorical Combinators, Sequential Algorithms and Functional Programming, Research Notes in Theoretical Computer Science, Pitman, London, 1986

    Google Scholar 

  7. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. Scott A Compendium of Continuous Lattices, Springer Verlag, New York, 1980

    Google Scholar 

  8. J.-Y. Girard Linear Logic, Theoretical Computer Science 50, pp. 1–102, North-Holland, Amsterdam, 1987

    Google Scholar 

  9. J.-Y. Girard, Y. Lafont and P. Taylor Proofs and Types, Cambridge Tracts in Theoretical Computer Science 7, Cambridge University Press, Cambridge, 1989

    Google Scholar 

  10. C. A. Gunter Profinite Solutions For Recursive Domain Equations, Doctoral Dissertation, University of Wisconsin at Madison, 1985

    Google Scholar 

  11. C. A. Gunter The largest first-order axiomatizable cartesian closed category of domains, in: Logic and Computer Science, A. Meyer (editor), pp.142–148, IEEE Computer Society, June 1986

    Google Scholar 

  12. C. A. Gunter Semantics of Programming Languages, Foundations in Computing Series, The MIT Press, Cambridge, Massachusetts, 1992

    Google Scholar 

  13. M. Huth Cartesian Closed Categories of Domains and the Space Proj(D), in: Proceedings of the Seventh Workshop on the Mathematical Foundations of Programming Semantics', Carnegie-Mellon University, Pittsburgh, March 1991, LNCS 598, pp. 259–271, 1992

    Google Scholar 

  14. M. Huth A Maximal Monoidal Closed Category Of Distributive Algebraic Domains, Technical Report 1992, Department of Computing and Information Sciences, Kansas State University, accepted for publication in the journal of Information and Computation

    Google Scholar 

  15. A. Jung Cartesian Closed Categories of Domains, CWI Tract 66, Amsterdam, 110pp., 1989

    Google Scholar 

  16. S. Mac Lane Categories for the Working Mathematician, Springer Verlag, New York, 1971

    Google Scholar 

  17. M. W. Mislove When Are Order Scattered And Topologically Scattered The Same?, Annals of Discrete Mathematics 23, pp. 61–80, North-Holland, Amsterdam, 1984

    Google Scholar 

  18. H. R. Nielson and F. Nielson Semantics With Applications, Wiley Professional Computing, England, 1992

    Google Scholar 

  19. G. Plotkin The category of complete partial orders: a tool of making meaning, in: Proceedings of the Summer School on Foundations of Artificial Intelligence and Computer Science, Instituto di Scienze dell'Informazione, Universita di Pisa, 1978

    Google Scholar 

  20. D. A. Schmidt Denotational Semantics, Allyn and Bacon, Inc., 1986

    Google Scholar 

  21. D. Scott Continuous Lattices, Lecture Notes in Mathematics, vol. 274, pp. 97–136, Springer, New York, 1972

    Google Scholar 

  22. D. Scott Domains for Denotational Semantics, in: ICALP82, M.Nielsen and E.M.Schmidt (eds.), Springer Verlag, LNCS, vol. 140, 1982

    Google Scholar 

  23. R. Seeley autonomous categories, cofree coalgebras and linear logic, In J.W. Grey and A. Scedrov, editors, Categories in Computer Science and Logic, volume 92 of Contemporary Mathematics, pp.371–382, American Mathematical Society, 1989

    Google Scholar 

  24. M. B. Smyth The Largest Cartesian Closed Category of Domains, Theoretical Computer Science 27, pp. 109–119, 1983

    Google Scholar 

  25. A. S. Troelstra Lectures On Linear Logic, CSLI Lecture Notes, No. 29, 1992

    Google Scholar 

  26. G. Winskel On Power Domains And Modality, Theoretical Computer Science, 36, pp. 127–137, 1985

    Google Scholar 

  27. G. Winskel An Introduction to Event Structures, in: Linear Time, Branching Time, and Partial Order in Logics and Models for Concurrency, LNCS, vol. 354, pp. 364–399, 1988

    Google Scholar 

  28. G. Q. Zhang Logic of Domains, Birkhäuser, Boston, 1991

    Google Scholar 

  29. G. Q. Zhang DI-Domains as Prime Information Systems, to appear in the journal of Information And Computation, 100 (2), pp. 151–177, 1992

    Google Scholar 

  30. G. Q. Zhang Quasi-prime Algebraic Domains, manuscript, personal communication, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephen Brookes Michael Main Austin Melton Michael Mislove David Schmidt

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huth, M. (1994). Linear domains and linear maps. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds) Mathematical Foundations of Programming Semantics. MFPS 1993. Lecture Notes in Computer Science, vol 802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58027-1_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-58027-1_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58027-0

  • Online ISBN: 978-3-540-48419-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics