Skip to main content

Montgomery-suitable cryptosystems

  • Cryptography
  • Conference paper
  • First Online:
Algebraic Coding (Algebraic Coding 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 781))

Included in the following conference series:

Abstract

Montgomery's algorithm [8], hereafter denoted Mn(·,·), is a process for computing Mn(A,B)=ABN mod n where N is a constant factor depending only on n. Usually, AB mod n is obtained by M n(Mn(A,B),N−2 mod n) but in this article, we introduce an alternative approach consisting in pre-integrating N into cryptographic keys so that a single Mn(·,·) will replace directly each modular multiplication. Except the advantage of halving the number of Montgomery multiplications, our strategy skips the pre-calculation (and the storage) of the constant N −2 mod n and reveals to be particularly efficient when a hardware device implementing Mn(·,·) is the basic computational tool at one's command.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. ARAZI, Modular multiplication is equivalent in complexity to a standard multiplication, Fortress U&T Internal Report (1992) available from Fortress U&T Information Safeguards, P.O. Box 1350, Beer-Sheva, IL-84110, Israel.

    Google Scholar 

  2. J. BENALOH & M. de MARE, One-way accumulators: A decentralised alternative to digital signatures, Advances in cryptology: Proceedings of Eurocrypt'93, Lecture Notes in Computer Science, Springer-Verlag, to appear.

    Google Scholar 

  3. W. DIFFIE & M. HELLMAN, New directions in cryptography, IEEE TIT, vol. 22, (1976), pp 644–654.

    Google Scholar 

  4. S. DUSSE & B. KALISKI, A cryptographic library for the Motorola DSP56000. In Advances in Cryptology — Eurocrypt'90, pp. 230–244, Springer-Verlag, New-York, 1990.

    Google Scholar 

  5. T. EL-GAMAL, A public-key cryptosystem and a signature scheme based on the discrete logarithm, IEEE TIT, vol. 31, No. 4, (1985), pp. 469–472.

    Google Scholar 

  6. S. EVEN, Systolic modular multiplication, In Advances in Cryptology, Crypto'90, pages 619–624, Springer-Verlag, New-York, 1991.

    Google Scholar 

  7. A. FIAT & A. SHAMIR, How to prove yourself: Practical solutions of identification and signature problems, Advances in Cryptology: Proceedings of Crypto'86, Lecture Notes In Computer Science, Springer-Verlag, Berlin, 263 (1987), pp 186–194.

    Google Scholar 

  8. P. MONTGOMERY, Modular multiplication without trial division, Mathematics of Computation, vol. 44 (170), pp. 519–521 1985.

    Google Scholar 

  9. D. NACCACHE, Can OSS be repaired?, Advances in cryptology: Proceedings of Eurocrypt'93, Lecture Notes in Computer Science, Springer-Verlag, to appear.

    Google Scholar 

  10. National Institute of Standards and Technology, Publication XX: announcement and specifications for a digital signature standard (DSS), Federal Register, August 19, 1992.

    Google Scholar 

  11. J.J. QUISQUATER & L. GUILLOU, A practical zero-knowledge protocol fitted to security microprocessor minimising both transmission and memory, Advances in cryptology: Proceedings of Eurocrypt'88 (C. Günter, ed.), Lecture Notes in Computer Science, Springer-Verlag, Berlin, 330 (1988), pp 123–128.

    Google Scholar 

  12. R. RIVEST, A. SHAMIR & L. ADLEMANN, A method for obtaining digital signatures and public-key cryptosystems, CACM, vol. 21 (1978), pp. 120–126.

    Google Scholar 

  13. C. SCHNORR, Efficient identification and signatures for smart-cards, Advances in cryptology: Proceedings of Eurocrypt'89 (G. Brassard ed.), Lecture Notes in computer science, Springer-Verlag, Berlin, 435 (1990), pp. 239–252.

    Google Scholar 

  14. M. SHAND & J. VUILLEMIN, Fast implementations of RSA cryptography, 11th IEEE Symposium on Computer Arithmetic, 1993. To appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Cohen S. Litsyn A. Lobstein G. Zémor

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naccache, D., M'Raïhi, D. (1994). Montgomery-suitable cryptosystems. In: Cohen, G., Litsyn, S., Lobstein, A., Zémor, G. (eds) Algebraic Coding. Algebraic Coding 1993. Lecture Notes in Computer Science, vol 781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57843-9_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-57843-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57843-7

  • Online ISBN: 978-3-540-48357-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics