Skip to main content

Cryptography and machine learning

  • Session 11: Invited Lecture 4
  • Conference paper
  • First Online:
Advances in Cryptology — ASIACRYPT '91 (ASIACRYPT 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 739))

Included in the following conference series:

Abstract

This paper gives a survey of the relationship between the fields of cryptography and machine learning, with an emphasis on how each field has contributed ideas and techniques to the other. Some suggested directions for future cross-fertilization are also proposed.

Supported by NSF grant CCR-8914428, ARO grant N00014-89-J-1988, and the Siemens Corporation,

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dana Angluin. On the complexity of minimum inference of regular sets. Information and Control, 39:337–350, 1978.

    Article  Google Scholar 

  2. Dana Angluin. A note on the number of queries needed to identify regular languages. Information and Control, 51:76–87, 1981.

    Article  Google Scholar 

  3. Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, April 1988.

    Google Scholar 

  4. Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning read-once formulas with queries. Technical report, University of California, Report No. UCB/CSD 89/528, 1989.

    Google Scholar 

  5. Dana Angluin and Michael Kharitonov. When won't membership queries help? In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, pages 444–454, New Orleans, Louisiana, May 1991.

    Google Scholar 

  6. Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam's razor. Information Processing Letters, 24:377–380, April 1987.

    MathSciNet  Google Scholar 

  7. Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

    Article  Google Scholar 

  8. Gilles Brassard. Modern Cryptology. Springer-Verlag, 1988. Lecture Notes in Computer Science Number 325.

    Google Scholar 

  9. D. W. Davies and W. L. Price. Security for Computer Networks: An Introduction to Data Security in Teleprocessing and Electronic Funds Transfer. John Wiley and Sons, New York, 1984.

    Google Scholar 

  10. D. E. Denning. Cryptography and Data Security. Addison-Wesley, Reading, Mass., 1982.

    Google Scholar 

  11. W. Diffie and M. E. Hellman. Privacy and authentication: An introduction to cryptography. Proceedings of the IEEE, 67:397–427, March 1979.

    Google Scholar 

  12. Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

    Google Scholar 

  13. Merrick Furst, Jeffrey Jackson, and Sean Smith. Improved learning of AC∮ functions. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory, pages 317–325, Santa Cruz, California, August 1991.

    Google Scholar 

  14. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. In Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, pages 464–479, Singer Island, 1984. IEEE.

    Google Scholar 

  15. S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2):270–299, April 1984.

    Google Scholar 

  16. Thomas Hancock. Learning 2μ DNF formulas and decision trees. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory, pages 199–209, Santa Cruz, California, August 1991.

    Google Scholar 

  17. Thomas Hancock and Yishay Mansour. Learning monotone DNF formulas on product distributions. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory, pages 179–183, Santa Cruz, California, August 1991.

    Google Scholar 

  18. M. E. Hellman. A cryptanalytic time-memory trade off. IEEE Trans. Inform. Theory, IT-26:401–406, 1980.

    Article  Google Scholar 

  19. David P. Helmbold and Philip M. Long. Tracking drifting concepts using random examples. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory, pages 13–23, Santa Cruz, California, 1991. Morgan Kaufmann.

    Google Scholar 

  20. D. Kahn. The Codebreakers. Macmillian, New York, 1967.

    Google Scholar 

  21. Michael Kearns. The Computational Complexity of Machine Learning. PhD thesis, Harvard University Center for Research in Computing Technology, May 1989. Technical Report TR-13-89. Also published by MIT Press as an ACM Distinguished Dissertation.

    Google Scholar 

  22. Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean formulae and finite automata. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pages 433–444, Seattle, Washington, May 1989.

    Google Scholar 

  23. Yves Kodratoff and Ryszard S. Michalski, editors. Machine Learning: An Artificial Intelligence Approach, volume III. Morgan Kaufmann, Los Altos, California, 1990.

    Google Scholar 

  24. Anthony Kuh, Thomas Petsche, and Ronald L. Rivest. Learning time-varying concepts. In Proceedings 1990 Conference on Computation Learning and Natural Learning (Princeton), 1990. To appear.

    Google Scholar 

  25. Solomon Kullback. Statistical Methods in Cryptanalysis. Aegean Park Press, 1976.

    Google Scholar 

  26. Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, pages 455–464, New Orleans, Louisiana, May 1991. ACM.

    Google Scholar 

  27. Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform, and learnability. In Proceedings of the Thirtieth Annual Symposium on Foundations of Computer Science, pages 574–579, Research Triangle Park, North Carolina, October 1989.

    Google Scholar 

  28. R. J. McEliece. A Public-Key System Based on Algebraic Coding Theory, pages 114–116. Jet Propulsion Lab, 1978. DSN Progress Report 44.

    Google Scholar 

  29. Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors. Machine Learning: An Artificial Intelligence Approach, volume I. Morgan Kaufmann, Los Altos, California, 1983.

    Google Scholar 

  30. Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors. Machine Learning: An Artificial Intelligence Approach, volume II. Morgan Kaufmann, Los Altos, California, 1986.

    Google Scholar 

  31. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attack. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pages 427–437, Baltimore, Maryland, 1990. ACM.

    Google Scholar 

  32. Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples. Journal of the ACM, 35(4):965–984, 1988.

    Article  Google Scholar 

  33. Leonard Pitt and Manfred K. Warmuth. The minimum DFA consistency problem cannot be approximated within any polynomial. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, Seattle, Washington, May 1989.

    Google Scholar 

  34. Leonard Pitt and Manfred K. Warmuth. Prediction preserving reducibility. Journal of Computer and System Sciences, 41:430–467, 1990.

    Article  Google Scholar 

  35. M. Rabin. Digitalized signatures as intractable as factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer Science, January 1979.

    Google Scholar 

  36. Jorma Rissanen. Stochastic Complexity in Statistical Inquiry, volume 15 of Series in Computer Science. World Scientific, 1989.

    Google Scholar 

  37. Ronald L. Rivest. Cryptography. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science (Volume A: Algorithms and Complexity), chapter 13, pages 717–755. Elsevier and MIT Press, 1990.

    Google Scholar 

  38. Ronald L. Rivest and Robert Sloan. Learning complicated concepts reliably and usefully. In Proceedings AAAI-88, pages 635–639, August 1988.

    Google Scholar 

  39. A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3:211–229, July 1959. (Reprinted in Computers and Thought, (eds. E. A. Feigenbaum and J. Feldman), McGraw-Hill, 1963, pages 39–70).

    Google Scholar 

  40. Robert E. Schapire. Learning probabilistic read-once formulas on product distributions. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory, pages 184–198, Santa Cruz, California, August 1991.

    Google Scholar 

  41. Robert Elias Schapire. The Design and Analysis of Efficient Learning Algorithms. PhD thesis, MIT EECS Department, February 1991. (MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-493).

    Google Scholar 

  42. R. Schroeppel and A. Shamir. A TS 2 = O(2n) time/space tradeoff for certain NP-complete problems. In Proc. 20th Annual IEEE Symposium on Foundations of Computer Science, pages 328–336, San Juan, Puerto Rico, 1979. IEEE.

    Google Scholar 

  43. Claude Shannon. Communication theory of secrecy systems. Bell System Technical Journal, 28:656–715, October 1949.

    Google Scholar 

  44. G. J. Simmons. Cryptology. In The New Encyclopædia Brittanica, pages 860–873. Encyclopædia Brittanica, 1989. (Volume 16).

    Google Scholar 

  45. N. J. A. Sloane. Error-correcting codes and cryptography. In D. Klarner, editor, The Mathematical Gardner, pages 346–382. Wadsworth, Belmont, California, 1981.

    Google Scholar 

  46. A. M. Turing. Computing machinery and intelligence. Mind, 59:433–460, October 1950. (Reprinted in Computers and Thought, (eds. E. A. Feigenbaum and J. Feldman), McGraw-Hill, 1963, pages 11–38).

    Google Scholar 

  47. Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, November 1984.

    Article  Google Scholar 

  48. A. D. Wyner. The wire-tap channel. Bell Sys. Tech. J., 54:1355–1387, 1975.

    Google Scholar 

  49. A. D. Wyner. An analog scrambling scheme which does not expand bandwidth, part 1. IEEE Trans. Inform. Theory, IT-25(3):261–274, 1979.

    Article  Google Scholar 

  50. A. D. Wyner. An analog scrambling scheme which does not expand bandwidth, part 2. IEEE Trans. Inform. Theory, IT-25(4):415–425, 1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hideki Imai Ronald L. Rivest Tsutomu Matsumoto

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rivest, R.L. (1993). Cryptography and machine learning. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds) Advances in Cryptology — ASIACRYPT '91. ASIACRYPT 1991. Lecture Notes in Computer Science, vol 739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57332-1_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-57332-1_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57332-6

  • Online ISBN: 978-3-540-48066-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics