Skip to main content

Completion and invariant theory in symbolic computation and artificial intelligence

  • Conference paper
  • First Online:
Artificial Intelligence and Symbolic Mathematical Computing (AISMC 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 737))

  • 166 Accesses

Abstract

An outline for the study of invariant theoretic (as structural) and completion (as syntactical) concepts in symbolic computation and artificial intelligence is presented on a level of abstraction which permits a unifying viewpoint on problems in symbolic computation and artificial intelligence. We refer to applications in computational polynomial ideal theory and in general problem-solving in the sense of AI research.

Supported by the Austrian Ministry for Science and Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lang, S., (1984). Algebra. Addison-Wesley.

    Google Scholar 

  2. Rota G.-C., Sturmfels B., (1988). Introduction to Invariant Theory in Superalgebras. Invariant Theory and Tableaux, ed., Stanton, D., Springer.

    Google Scholar 

  3. Kalman, R., Arbib, M., Falb, P., (1965). Topics in Mathematical System Theory, McGraw-Hill.

    Google Scholar 

  4. Kleene, S., (1967). Introduction to Metamathematics. North-Holland.

    Google Scholar 

  5. Pfalzgraf, J., (1991). Logical Fiberings and Polycontextural Systems. In: Fundamentals of Artificial Intelligence Research, eds., Jorrand, Ph., Kelemen, J., LNCS 535, Springer.

    Google Scholar 

  6. Jacobson, N., (1980). Basic Algebra II. Freeman.

    Google Scholar 

  7. Jouannaud, J-P., (1990). Syntactic Theories. In: Mathematical Foundations of Computer Science, ed., Rovan, B., LNCS 452, Springer.

    Google Scholar 

  8. Dershowitz, N., Jouannaud, J.-P. (1990). Rewrite Systems. In: Handbook of Theoretical Computer Science. Vol B: Formal Methods and Semantics, ed., van Leeuwen, J., North-Holland.

    Google Scholar 

  9. Goguen, J., (1986). What Is Unification? In: Resolution of Equations in Algebraic Structures. Vol. 1: Algebraic Techniques, eds., Nivat, M., Ait-Kaci, H., Academic Press.

    Google Scholar 

  10. Buchberger, B., (1987). History and Basic Features of the Critical-pair/completion Procedure. J. Symbolic-Computation, 3.

    Google Scholar 

  11. Buchberger, B., (1976). A Theoretical Basis for the Reduction of Polynomials to Canonical Form. ACM SIGSAM Bull., 10.

    Google Scholar 

  12. Winkler, F., (1984). The Church-Rosser Property in Computer Algebra and Special Theorem Proving. PhD Thesis, University. of Linz.

    Google Scholar 

  13. Huet, G., (1987). Deduction and Computation. In: Logic of Programming and Calculi of Discrete Design, ed., Broy, M., Springer.

    Google Scholar 

  14. Nilsson, N., (1971). Problem Solving Methods in Artificial Intelligence. McGrawHill.

    Google Scholar 

  15. Engeler, E., (1990). Combinatory Differential Fields, Theoretical Computer Science 72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Calmet John A. Campbell

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ardeleanu, E.E. (1993). Completion and invariant theory in symbolic computation and artificial intelligence. In: Calmet, J., Campbell, J.A. (eds) Artificial Intelligence and Symbolic Mathematical Computing. AISMC 1992. Lecture Notes in Computer Science, vol 737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57322-4_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-57322-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57322-7

  • Online ISBN: 978-3-540-48063-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics