Skip to main content

How to learn in an incomplete knowledge environment: Structured objects for a modal approach

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 1993)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 727))

Included in the following conference series:

  • 727 Accesses

Abstract

We present a formalism and a method that allow to learn structured representations in a noisy knowledge base. The formalism fills the gap between Artificial Intelligence and Data Analysis research's domains. It describes a kind of structured modal object called “hoard”, that can express various semantics as probability, possibility and belief. The method aims at growing and refining a knowledge base, composed of hoards, by the incremental use of a data base, composed of hoards subparts. Two levels of knowledge are involved: structured hoards represent classes, and non structured individuals represent data. The main goals of the method are to match quickly both levels by automatic rules generation, and to acquire new knowledge in the structured level, by using the flat data base. Some applications are, for example, situation understanding, image analysis, adaptation to temporal variable process, negotiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisson G. “Learning of rule systems by combining clustering and generalization”, in Proc. of Symbolic-Numeric Data Analysis and Learning, eds. E. Diday, Y. Lechevallier, Nova Science Publishers, New York, pp. 399–415.

    Google Scholar 

  2. Brito P., Diday E. “Pyramidal representation of symbolic objects”, in Proc. of the NATO advanced Workshop on data and computed-assisted decisions, Hamburg 3–5 Sep. 1989, eds. M. Schader, W. Gaul, Springer-Verlag.

    Google Scholar 

  3. Brito P. Analyse de données symboliques. Pyramides d'héritage, Thèse de l'Université Paris IX Dauphine, 1991.

    Google Scholar 

  4. De Carvalho F.A.T. “Histogrammes de variables d'objets assertion booléens”, in Traitement des connaissances Symboliques-Numériques, Paris 14–15 Mai 1992, pp. 65–81, ed. LISE-CEREMADE, Université Paris IX Dauphine.

    Google Scholar 

  5. Diday E. “Introduction à l'approche symbolique en analyse des données”, in Actes des journées Symboliques-Numériques pour l'apprentissage de connaissances à partir des données, eds. E. Diday, Y. Kodratoff, CEREMADE-Université Paris IX Dauphine, 1987, pp. 21–56.

    Google Scholar 

  6. Diday E. “Introduction à l'analyse des données symboliques: objets symboliques modaux et implicite”, in Actes des 2èmes journées Symboliques-Numériques pour l'apprentissage de connaissances à partir d'observations, eds. E. Diday, Y. Kodratoff, LRI-Université de Paris-Sud, Orsay, 1988, pp. 1–30.

    Google Scholar 

  7. Diday E. “Towards a statistical theory of intensions for knowledge analysis”, Rapport de Recherche INRIA N∘ 1494, 1991.

    Google Scholar 

  8. Diday E. “Des objets de l'analyse des données à ceux de l'analyse des connaissances”, in Induction Symbolique et Numérique à partir de données, CEPADUES-EDITION, pp. 9–75, 1991.

    Google Scholar 

  9. Dubois D., Prade H. Théorie des possibilités, ed. Masson, 1985.

    Google Scholar 

  10. Fisher D. “Conceptual clustering, Learning from examples and Inference”, in Proc. of the 4th International Workshop on Machine Learning, Irvine, California, 1987.

    Google Scholar 

  11. Ganascia J.B. “Improvement and refinement of the learning bias semantic”, in Proc. of the 8th ECAI, pp. 238–270, 1988.

    Google Scholar 

  12. Gettler-Summa M. “Factorial axis representation by symbolic objects”, in Traitement des connaissances Symboliques-Numériques, Paris 14–15 Mai 1992, pp. 53–64, ed. LISE-CEREMADE, Université Paris IX Dauphine.

    Google Scholar 

  13. Kodratoff Y. Leçons d'apprentissage symbolique automatique, CEPADUES-EDITIONS, 1986.

    Google Scholar 

  14. Langley P., Fisher D. “Approaches to conceptual clustering”, in Proc. of the 9th IJCAI, Morgan Kaufman Publishers, pp. 691–697, 1991.

    Google Scholar 

  15. Lebbe J., Vignes R. “Un système générateur de graphes d'identification d'objets symboliques”, in Induction Symbolique et Numérique à partir de Données, CEPADUES-EDITIONS, 1991.

    Google Scholar 

  16. Manago M. Intégration de techniques numériques et symboliques en apprentissage, Thèse de l'Université Paris-Sud, Orsay, 1988.

    Google Scholar 

  17. Michalski R. S. “Pattern recognition as rule-guided inductive inference”, in IEEE Transactions on pattern analysis and machine intelligence, Vol. PAMI-2, n∘ 4, 1980.

    Google Scholar 

  18. Michalski R. S., Stepp R. “An application of AI techniques to structuring objects into an optimal conceptual hierarchy”, in Proc. of the 7th IJCAI, Vancouver, Canada, 1981.

    Google Scholar 

  19. Michalski R.S., Carbonell J., Mitchell T. “Understanding the nature of learning”, in Machine Learning 2 — An artificial Intelligence Approach, Tioga, pp. 3–25, 1986.

    Google Scholar 

  20. Mitchell T. “Generalization as search”, in Artificial Intelligence, Vol. 18, pp. 243–250, 1982.

    Google Scholar 

  21. Quinlan J.R. “Learning logical definitions from relations”, in Machine Learning Journal 5, pp. 239–266, 1990.

    Google Scholar 

  22. Rouveirol C. ITOU: induction de théorie en ordre un, Thèse de l'Université Paris-Sud, Orsay, 1991.

    Google Scholar 

  23. Vignard P. Représentation des connaissances. Mécanismes d'exploitation et d'apprentissage, INRIA, 1991.

    Google Scholar 

  24. Vignes R. Caractérisation automatique de groupes biologiques, Thèse de l'Université Paris VI, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miguel Filgueiras Luís Damas

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Auriol, E. (1993). How to learn in an incomplete knowledge environment: Structured objects for a modal approach. In: Filgueiras, M., Damas, L. (eds) Progress in Artificial Intelligence. EPIA 1993. Lecture Notes in Computer Science, vol 727. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57287-2_59

Download citation

  • DOI: https://doi.org/10.1007/3-540-57287-2_59

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57287-9

  • Online ISBN: 978-3-540-48036-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics