Skip to main content

Computing treewidth and minimum fill-in: All you need are the minimal separators

  • Conference paper
  • First Online:
Algorithms—ESA '93 (ESA 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 726))

Included in the following conference series:

Abstract

Consider a class of graphs \(\mathcal{G}\) having a polynomial time algorithm computing the set of all minimal separators for every graph in \(\mathcal{G}\). We show that there is a polynomial time algorithm for treewidth and minimum fill-in, respectively, when restricted to the class \(\mathcal{G}\). Many interesting classes of intersection graphs have a polynomial time algorithm computing all minimal separators, like permutation graphs, circle graphs, circular arc graphs, distance hereditary graphs, chordal bipartite graphs etc. Our result generalizes earlier results for the treewidth and minimum fill-in for several of these classes. We also consider the related problems pathwidth and interval completion when restricted to some special graph classes.

The work of the first and second author has been supported partially by the ESPRIT Basic Research Action of the EC under contract No. 7141 (project ALCOM II.)

This author is supported by the Foundation for Computer Science (S.I.O.N.) of the Netherlands Organization for Scientific Research (N.W.O.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, R., H. Balakrishnan and C. Pandu Rangan, Treewidth of distance hereditary graphs, To appear.

    Google Scholar 

  2. Arnborg, S., Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey. BIT 25, (1985), pp. 2–23.

    Google Scholar 

  3. Arnborg, S., D. G. Corneil and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Alg. Disc. Meth. 8, (1987), pp. 277–284.

    Google Scholar 

  4. Arnborg, S. and A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees. Disc. Appl. Math. 23, (1989), pp. 11–24.

    Google Scholar 

  5. Bandelt, H. J. and H. M. Mulder, Distance-Hereditary Graphs, Journal of Combinatorial Theory, Series B 41, (1986), pp. 182–208.

    Google Scholar 

  6. Bodlaender, H., Classes of graphs with bounded treewidth, Technical Report RUU-CS-86-22, Department of Computer Science, Utrecht University, 1986.

    Google Scholar 

  7. Bodlaender, H., A tourist guide through treewidth, Technical report RUU-CS-92-12, Department of Computer Science, Utrecht University, Utrecht, The Netherlands, 1992. To appear in: Acta Cybernetica.

    Google Scholar 

  8. Bodlaender, H., A linear time algorithm for finding tree-decompositions of small treewidth, In Proceedings of the 25th Annual ACM Symposium on Theory of Computing, 1993, pp. 226–234.

    Google Scholar 

  9. Bodlaender, H., T. Kloks and D. Kratsch, Treewidth and pathwidth of permutation graphs, Technical report RUU-CS-92-30, Department of Computer Science, Utrecht University, Utrecht, The Netherlands, (1992). To appear in: Proceedings of the 20 th International Colloquium on Automata, Languages and Programming (1993).

    Google Scholar 

  10. Bodlaender, H. and R. H. Möhring, The pathwidth and treewidth of cographs, In Proceedings 2nd Scandinavian Workshop on Algorithm Theory, Springer Verlag, Lecture Notes in Computer Science 447, (1990), pp. 301–309.

    Google Scholar 

  11. Brandstädt, A., Special graph classes — a survey, Schriftenreihe des Fachbereichs Mathematik, SM-DU-199 (1991), Universität-Gesamthochschule Duisburg.

    Google Scholar 

  12. Corneil, D. G., Y. Perl, L. K. Stewart, Cographs: recognition, applications and algorithms, Congressus Numerantium, 43 (1984), pp. 249–258.

    Google Scholar 

  13. Dirac, G. A., On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25, (1961), pp. 71–76.

    Google Scholar 

  14. Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, San Francisco, 1979.

    Google Scholar 

  15. Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

    Google Scholar 

  16. Golumbic, M. C., D. Rotem, J. Urrutia, Comparability graphs and intersection graphs, Discrete Mathematics 43, (1983), pp. 37–46.

    Google Scholar 

  17. Gustedt, J., On the pathwidth of chordal graphs, To appear in Discrete Applied Mathematics.

    Google Scholar 

  18. Habib, M. and R. H. Möhring, Treewidth of cocomparability graphs and a new order-theoretic parameter, Technical Report 336/1992, Technische Universität Berlin, 1992.

    Google Scholar 

  19. Johnson, D. S., The NP-completeness column: An ongoing guide, J. Algorithms 6, (1985), pp. 434–451.

    Google Scholar 

  20. Kloks, T., Treewidth, Ph.D. Thesis, Utrecht University, The Netherlands, 1993.

    Google Scholar 

  21. Kloks, T., Minimum fill-in for chordal bipartite graphs, Technical Report RUU-CS-93-11, Department of Computer Science, Utrecht University, 1993.

    Google Scholar 

  22. Kloks, T., Treewidth of circle graphs, Technical Report RUU-CS-93-12, Department of Computer Science, Utrecht University, 1993.

    Google Scholar 

  23. Kloks, T. and D. Kratsch, Treewidth of chordal bipartite graphs, 10 th Annual Symposium on Theoretical Aspects of Computer Science, Springer-Verlag, Lecture Notes in Computer Science 665, (1993), pp. 80–89.

    Google Scholar 

  24. Möhring, R. H., private communication.

    Google Scholar 

  25. Monien, B. and I. H. Sudborough, Min Cut is NP-complete for Edge Weighted Trees, Theoretical Computer Science 58 (1988), pp. 209–229.

    Google Scholar 

  26. Rose, D. J., Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970), pp. 597–609.

    Google Scholar 

  27. Spinrad, J., A. Brandstädt, L. Stewart, Bipartite permutation graphs, Discrete Applied Mathematics, 18 (1987), pp. 279–292.

    Google Scholar 

  28. Sundaram, R., K. Sher Singh and C. Pandu Rangan, Treewidth of circular arc graphs, To appear in SIAM Journal on Discrete Mathematics.

    Google Scholar 

  29. Tarjan, R. E., Decomposition by clique separators, Discrete Mathematics 55 (1985), pp. 221–232.

    Google Scholar 

  30. Yannakakis, M., Computing the minimum fill-in is NP-complete, SIAM J. Alg. Disc. Meth. 2, (1981), pp. 77–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kloks .

Editor information

Thomas Lengauer

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kloks, T., Bodlaender, H., Müller, H., Kratsch, D. (1993). Computing treewidth and minimum fill-in: All you need are the minimal separators. In: Lengauer, T. (eds) Algorithms—ESA '93. ESA 1993. Lecture Notes in Computer Science, vol 726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57273-2_61

Download citation

  • DOI: https://doi.org/10.1007/3-540-57273-2_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57273-2

  • Online ISBN: 978-3-540-48032-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics