Maintaining qualitative spatial knowledge

  • Daniel Hernández
Spatial Reasoning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 716)


We present mechanisms used to maintain the consistency of a knowledge base of spatial information based on a qualitative representation of 2-D positions. These include the propagation heuristics used when inserting new relations as well as the reason maintenance mechanisms necessary to undo the effects of propagation when deleting a relation. Both take advantage of the rich structure of the spatial domain.


Constraint Satisfaction Problem Reference Object Spatial Knowledge Qualitative Representation Topological Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11), 832–843.Google Scholar
  2. American Association for Artificial Intelligence, 8th-AAAI (1990). Proc. of the Eighth National Conference on Artificial Intelligence, Menlo Park/Cambridge. AAAI Press/The MIT Press.Google Scholar
  3. Bobrow, D. (Ed.). (1984). Qualitative Reasoning about Physical Systems. Elsevier Science Publishers, Amsterdam.Google Scholar
  4. Chang, S.-K. and Li, Y. (1988). Representation of multi-resolution symbolic and binary pictures using 2DH-strings. In Proceedings of the IEEE Workshop on Language for Automation, pp. 190–195.Google Scholar
  5. Chang, S.-K., Shi, Q.-Y., and Yan, C.-W. (1987). Iconic indexing by 2D-strings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(3), 413–427.Google Scholar
  6. Charniak, E., Riesbeck, C. K., and McDermott, D. V. (1980). Artificial Intelligence Programming. Erlbaum, Hillsdale, N.J.Google Scholar
  7. Cohn, A. G., Cui, Z., and Randell, D. A. (1992). Logical and computational aspects of spatial reasoning. In Pribbenow, S. and Schlieder, C. (Eds.), Spatial Concepts: Connecting Cognitive Theories with Formal Representations. ECAI-92 Workshop.Google Scholar
  8. Doyle, J. (1979). A truthmaintenance system. Artificial Intelligence, 12, 231–272.Google Scholar
  9. Egenhofer, M. J. (1989). A formal definition of binary topological relationships. In Litwin, W. and Schek, H.-J. (Eds.), Third International Conference on Foundations of Data Organization and Algorithms, Vol. 367 of Lecture Notes in Computer Science, pp. 457–472. Springer-Verlag, Berlin.Google Scholar
  10. Egenhofer, M. J. (1991). Reasoning about binary topological relations. In Second Symposium on Large Spatial Databases, Vol. 525 of Lecture Notes in Computer Science. Springer-Verlag.Google Scholar
  11. Egenhofer, M. J. and Al-Taha, K. K. (1992). Reasoning about gradual changes of topological relationships. In Frank et al. (1992), pp. 196–219.Google Scholar
  12. Egenhofer, M. J. and Franzosa, R. (1991). Point-set topological spatial relations. International Journal of Geographical Information Systems, 5(2), 161–174.Google Scholar
  13. Egenhofer, M. J. and Sharma, J. (1993). Assessing the consistency of complete and incomplete topological information. Geographical Systems, 1(1). To appear.Google Scholar
  14. Frank, A. U., Campari, I., and Formentini, U. (Eds.). (1992). Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. Intl. Conf. GIS—From Space to Territory. Pisa, Sept. 1992, Vol. 639 of Lecture Notes in Computer Science, Berlin. Springer-Verlag.Google Scholar
  15. Frank, A. U. (1991). Qualitative spatial reasoning with cardinal directions. In Kaindl, H. (Ed.), 7. Österreichische Artificial Intelligence Tagung. Springer-Verlag.Google Scholar
  16. Freksa, C. (1992a). Temporal reasoning based on semi-intervals. Artificial Intelligence, 54, 199–227.MathSciNetGoogle Scholar
  17. Freksa, C. (1992b). Using orientation information for qualitative spatial reasoning. In Frank et al. (1992); pp. 162–178.Google Scholar
  18. Freksa, C. and Zimmermann, K. (1992). On the utilization of spatial structures for cognitively plausible and efficient reasoning. In Procs. of the 1992 IEEE International Conference on Systems, Man, and Cybernetics Proceedings, Chicago.Google Scholar
  19. Guesgen, H.-W. (1989). Spatial reasoning based on Allen's temporal logic. Technical Report TR-89-049, ICSI, Berkeley, CA.Google Scholar
  20. Hernández, D. (1984). Modulare Softwarebausteine zur Wissensrepräsentation. IMMD (IV) and RRZE Universität Erlangen-Nürnberg.Google Scholar
  21. Hernández, D. (1991). Relative representation of spatial knowledge: The 2-D case. In Mark and Frank (1991), pp. 373–385.Google Scholar
  22. Hernández, D. (1992). Qualitative Representation of Spatial Knowledge. Ph.D. thesis, Institut für Informatik, Technische Universität München.Google Scholar
  23. Hernández, D. and Zimmermann, K. (1992). Default reasoning and the qualitative representation of spatial knowledge. In preparation.Google Scholar
  24. Jungert, E. (1988). Extended symbolic projection used in a knowledge structure for spatial reasoning. In Proceedings of the 4th BPRA Conf. on Pattern Recognition. Springer-Verlag, Berlin.Google Scholar
  25. de Kleer, J. (1986). An assumption based truth maintenance system. Artificial Intelligence, 28, 127–162.Google Scholar
  26. Kuipers, B. J. and Levitt, T. (1988). Navigation and mapping in large-scale space. AI Magazine, 9(2), 25–43.Google Scholar
  27. Kumar, V. (1992). Algorithms for constraint satisfaction problems: A survey. AI Magazine, 13(1), 32–44.Google Scholar
  28. Levitt, T. and Lawton, D. (1990). Qualitative navigation for mobile robots. Artificial Intelligence, 44, 305–360.Google Scholar
  29. Mackworth, A. K. (1987). Constraint satisfaction. In Shapiro (1987).Google Scholar
  30. Mark, D. M. and Frank, A. U. (Eds.). (1991). Cognitive and Linguistic Aspects of Geographic Space. NATO Advanced Studies Institute. Kluwer, Dordrecht.Google Scholar
  31. McAllester, D. (1980). An outlook on truth maintenance. Memo 551, MIT Artificial Intelligence Laboratory, Cambridge, MA.Google Scholar
  32. McDermott, D. V. (1983). Contexts and data dependencies: A synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(3), 237–246.Google Scholar
  33. McDermott, D. V. (1992). Reasoning, spatial. In Shapiro, E. (Ed.), Encyclopedia of Artificial Intelligence (Second edition)., pp. 1322–1334. Wiley.Google Scholar
  34. Meseguer, P. (1989). Constraint satisfaction problems: An overview. AI Communications, 2(1), 3–17.Google Scholar
  35. Mukerjee, A. and Joe, G. (1990). A qualitative model for space. In 8th-AAAI (1990), pp. 721–727.Google Scholar
  36. Shapiro, E. (Ed.). (1987). Encyclopedia of Artificial Intelligence. Wiley.Google Scholar
  37. Smith, T. R. and Park, K. K. (1992). Algebraic approach to spatial reasoning. International Journal of Geographical Information Systems, 6(3), 177–192.Google Scholar
  38. Stallman, R. and Sussman, G. J. (1977). Forward reasoning and dependencydirected backtracking. Artificial Intelligence, 9(2), 135–196.Google Scholar
  39. Topaloglou, T. (1991). Representation and management issues for large spatial knowledge bases. Technical Report, Dept. of Computer Science, University of Toronto, Toronto, Ontario.Google Scholar
  40. Vilain, M., Kautz, H., and van Beek, P. (1990). Constraint propagation algorithms for temporal reasoning: A revised report. In Weld and de Kleer (1990). Revised version of a paper that appeared in Proceedings of AAAI 1986, pp. 377–382.Google Scholar
  41. Weld, D. S. and de Kleer, J. (Eds.). (1990). Readings in Qualitative Reasoning about Physical Systems. Morgan Kaufmann, San Mateo, CA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Daniel Hernández
    • 1
  1. 1.Fakultät für InformatikTechnische Universität MünchenMunichGermany

Personalised recommendations