A logical framework for reasoning about space

  • Laure Vieu
Spatial Reasoning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 716)


In this paper, we present a theory of space as a framework for spatial reasoning. We believe this formalism is useful for representing geographic space, at least when two constraints are present: a necessity to reason qualitatively over spatial information, and a lack of precise, homogeneous spatial data. This theory is based on mereology, an axiomatic theory of part-whole relation. It includes a formalization of topological concepts as well as some geometric notions, namely distance and orientation. It can be extended to a theory of space-time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Allen: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)Google Scholar
  2. 2.
    M. Aurnague, L. Vieu: A three-level approach to the semantics of space. In: C. Zelinsky-Wibbelt (ed.): The Semantics of Prepositions — From Mental Processing to Natural Language Processing. Berlin: Mouton de Gruyter, to appear in 1993Google Scholar
  3. 3.
    J. van Benthem: The logic of time. Dordrecht: Reidel 1983Google Scholar
  4. 4.
    L. Buisson, R. Martin-Clouaire, L. Vieu, J.-L. Wybo: Représentation de l'espace, dynamique qualitative et raisonnement spatial. Project of the “Programme Interdisciplinaire de Recherche — Environnement”, CNRS 1992Google Scholar
  5. 5.
    B. Clarke: A calculus of individuals based on “connection”. Notre Dame Journal of Formal Logic 22(3), 204–218 (1981)Google Scholar
  6. 6.
    B. Clarke: Individuals and points. Notre Dame Journal of Formal Logic 26(1), 61–75 (1985)Google Scholar
  7. 7.
    E. Davis: A logical framework for commonsense predictions of solid object behavior. Artificial Intelligence in Engineering 3(3), 125–140 (1988)Google Scholar
  8. 8.
    M. Denis: Image et cognition. Paris: Presses Universitaires de France 1989Google Scholar
  9. 9.
    K. Forbus: Qualitative reasoning about space and motion. In: D. Gentner, A. L. Stevens (eds.): Mental models. Hillsdale (NJ): Erlbaum 1983, pp. 53–73Google Scholar
  10. 10.
    A. Frank: Qualitative Spatial Reasoning about Distances and Directions in Geographic Space. Journal of Visual Languages and Computing 3, 343–371 (1992)Google Scholar
  11. 11.
    C. Freksa: Using Orientation Information for Qualitative Spatial Reasoning. In: A. Frank, I. Campari, U. Formentini (eds.): Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, Proceedings of the International Conference GIS — From Space to Territory. Berlin: Springer 1992, pp. 162–178Google Scholar
  12. 12.
    N. Guarino, R. Poli (eds.): Proceedings of the International Workshop on Formal Ontology. Padova: LADSEB-CNR (Internal Report 01/93) 1993Google Scholar
  13. 13.
    H. Kamp: Events, instants and temporal reference. In: R. Bäuerle, U. Egli, A. von Stechow (eds.): Semantics from different points of view. Berlin: Springer 1979, pp. 376–417Google Scholar
  14. 14.
    H. Leonard, N. Goodman: The calculus of individuals and its uses. The Journal of Symbolic Logic 5, 45–55 (1940)Google Scholar
  15. 15.
    S. Lesniewski: O podstawach matematyki (On the foundations of mathematics). Przeglad filozoficzny (Philosophical Review) vols. 30–34, (1927–1931).Google Scholar
  16. 16.
    D. Lewis: Parts of Classes. Oxford (MA): Blackwell 1991Google Scholar
  17. 17.
    B. Ludwig: L'érosion par ruissellement concentré des terres cultivées du Nord du Bassin Parisien, Ph.D. dissertation. Strasbourg: Université Louis Pasteur 1992Google Scholar
  18. 18.
    A. Mukerjee, G. Joe: A Qualitative Model for Space. In: Proceedings of the Eighth National Conference on Artificial Intelligence, AAAI 90. Cambridge (MA): MIT Press 1990, pp. 721–727Google Scholar
  19. 19.
    D. Randell, A. Cohn: Modeling topological and metrical properties in physical processes. In: R. Brachman, H. Levesque, R. Reiter (eds.): Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning. San Mateo (CA): Morgan Kaufmann 1989, pp. 357–368Google Scholar
  20. 20.
    P. Simons: Parts — A study in ontology. Oxford: Clarendon Press 1987Google Scholar
  21. 21.
    A. Tarski: Les fondements de la géométrie des corps. In: A. Tarski: Logique, Sémantique, Métamathématique. Paris: Armand Colin 1972Google Scholar
  22. 22.
    L. Vieu: Sémantique des relations spatiales et inférences spatio-temporelles, Ph.D. dissertation. Toulouse: Université Paul Sabatier 1991Google Scholar
  23. 23.
    L. Vieu, R. Martin-Clouaire: Spatial and Qualitative Reasoning for Modelling Physical Processes. Submitted (20p)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Laure Vieu
    • 1
  1. 1.Laboratoire d'Intelligence ArtificielleINRACastanet-Tolosan cedexFrance

Personalised recommendations