Speedup of recognizable trace languages

  • Christophe Cérin
  • Antoine Petit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 711)


Traces have been defined by A.Mazurkiewicz in order to modelize concurrent processes. The decomposition of a trace in Foata normal form gives the “best” parallel execution of a trace. We define naturally the speedup of a trace as the quotient of its sequential execution time by its parallel execution time. We generalize this definition to trace languages and we prove that this speedup can be computed in a modular way for any recognizable trace language.


speedup trace recognizable language 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AR88]
    I.J. Aalbersberg and G. Rozenberg. Theory of traces. Theoretical Computer Science, 60:1–82, 1988.Google Scholar
  2. [Ber79]
    J. Berstel. Transductions and Context Free Languages. Taubner, Stuttgart, 1979.Google Scholar
  3. [Cér92]
    C. Cérin. Application de la théorie des traces à l'implantation et à la mesure d'algorithmes de distribution. Thèse, Université de Paris-Sud, 1992.Google Scholar
  4. [CF69]
    P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrangements, volume 85 of Lecture Notes in Mathematics. Springer, Berlin-Heidelberg-New York, 1969.Google Scholar
  5. [CP85]
    R. Cori and D. Perrin. Automates et commutations partielles. R.A.I.R.O.-Informatique Théorique et Applications, 19:21–32, 1985.Google Scholar
  6. [Die90]
    V. Diekert. Combinatorics on Traces, volume 454 of Lecture Notes in Computer Science. Springer, Berlin-Heidelberg-New York, 1990.Google Scholar
  7. [Maz77]
    A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.Google Scholar
  8. [Maz87]
    A. Mazurkiewicz. Trace theory. In W. Brauer et al., editors, Petri Nets, Applications and Relationship to other Models of Concurrency, volume 255 of Lecture Notes in Computer Science, pages 279–324. Springer, Berlin-Heidelberg-New York, 1987.Google Scholar
  9. [Och88]
    E. Ochmanski. On morphisms onf trace monoids. In STACS'88, volume 294 of Lecture Notes in Computer Science, pages 346–355. Springer, Berlin-Heidelberg-New York, 1988.Google Scholar
  10. [Per89]
    D. Perrin. Partial commutations. In Proceedings of the 16th International Colloquium on Automata, Languages and Programming (ICALP'89), Stresa (Italy) 1989, volume 372 of Lecture Notes in Computer Science, pages 637–651. Springer, Berlin-Heidelberg-New York, 1989.Google Scholar
  11. [Sah89]
    N. Saheb. Concurrency measure in commutation monoids. Discrete Applied Mathematics, 24:223–236, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Christophe Cérin
    • 1
    • 2
  • Antoine Petit
    • 2
  1. 1.UFR de mathématiques et d'informatiqueUniversité de Picardie Jules Verne, LAMIFAAmiens Cedex
  2. 2.URA CNRS 410Université Paris Sud, LRIOrsay Cedex

Personalised recommendations