Advertisement

The class of problems that are linearly equivalent to satisfiability or a uniform method for proving NP-completeness

  • Nadia Creignou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 702)

Keywords

Linear Time Turing Machine Vertex Cover Uniform Method Hamiltonian Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. J. Compton and C. W. Henson, A uniform method for proving lower bounds on the computational complexity of logical theories, Annals of Pure and Applied Logic 48 (1990), 1–79.Google Scholar
  2. [2]
    S. A. Cook, The complexity of theorem-proving procedures, Proc. 3rd Ann. ACM Symp. on Theory of Computing, Association for Computing Machinery, New York (1971), 151–158.Google Scholar
  3. [3]
    N. Creignou, Exact complexity of problems of incompletely specified automata, T. R. Univ. de Caen, France, Cahiers du LIUC 92-9 (1992),, submitted to Annals of Mathematics and Artificial Intelligence, J. C. Baltzer Scientific Publishing Co. (Suisse), Special issue ed. M. Nivat and S. Grigorieff, (1993).Google Scholar
  4. [4]
    N. Creignou, Temps linéaire et problèmes NP-complets, Thèse de doctorat, Univ. de Caen, France (1993).Google Scholar
  5. [5]
    A. K. Dewdney, Linear transformations between combinatorial problems, Intern. J. Computer Math. 11 (1982), 91–110.Google Scholar
  6. [6]
    M. R. Garey and G. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, W. H. Freeman and Co, San Franscisco (1979).Google Scholar
  7. [7]
    E. Grandjean, Nontrivial lower bound for a NP problem on automata, SIAM J. Comput., 19, (1990), 1–14.Google Scholar
  8. [8]
    E. Grandjean, Linear time algorithms and NP-complete problems, T. R. Univ. de Caen, France, Cahiers du LIUC 91-9 (1991), to appear in Lect. Notes in Comput. Sci. CSL'92 (San Miniato) (1993).Google Scholar
  9. [9]
    E. Grandjean, Sorting, linear time and Satisfiability problem, preprint (1992), submitted to Annals of Mathematics and Artificial Intelligence, J. C. Baltzer Scientific Publishing Co. (Suisse), Special issue ed. M. Nivat and S. Grigorieff, (1993).Google Scholar
  10. [10]
    J. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, MA (1979).Google Scholar
  11. [11]
    R. M. Karp, Reducibility among combinatorial problems, in R. E. Miller and J. W. Thatcher (eds), Complexity of Computer Computations, Plenum Press, New York (1972), 85–103.Google Scholar
  12. [12]
    D. G. Kirkpatrick and P. Hell, On the complexity of a general matching problem, Proc. 10th Ann. ACM Symp. of Theory of Computing, Association for Computing Machinery, New York (1978), 240–245.Google Scholar
  13. [13]
    D. E. Knuth, Axioms and Hulls, Lect. Notes in Comput. Sci. 606, Springer-Verlag.Google Scholar
  14. [14]
    T. J. Schaefer, The complexity of satisfiability problems, Proc. 10th Ann. ACM Symp. of Theory of Computing, Association for Computing Machinery, New York, (1978), 216–226.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Nadia Creignou
    • 1
  1. 1.Université de Caen, LAIACCaen CedexFrance

Personalised recommendations