Optimization problems: Expressibility, approximation properties and expected asymptotic growth of optimal solutions

  • Thomas Behrendt
  • Kevin Compton
  • Erich Grädel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 702)


Polynomial Time Maximization Problem Binary Predicate Finite Structure Indicator Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Alon and J. Spencer, The Probabilistic Method, Wiley, New York (1991).Google Scholar
  2. [2]
    S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and in-tractability of approximation problems, Proceedings of Annual IEEE Symposium on Foundations of Computer Science (1992), 14–23.Google Scholar
  3. [3]
    A. Blass and Y. Gurevich, Existential fixed-point logic, in: “Computation Theory and Logic” (E. Börger, Ed.), Lecture Notes in Computer Science Nr. 270, Springer 1987, 20–36.Google Scholar
  4. [4]
    B. Bollobás, Random graphs, Academic Press, London (1985).Google Scholar
  5. [5]
    K. Compton, 0–1 laws in logic and combinatorics, in: “NATO Advanced Study Institute on algorithms and Order”, (I. Rival, Ed), pp 353–383, Reidel, Dordrecht (1988).Google Scholar
  6. [6]
    R. Fagin, Generalized first-order spectra and polynomial time recognizable sets, Complexity of Computations, SIAM-AMS Proc. 7 (1974), Richard Karp, ed., American Math. Soc., Providence, RI, 43–73.Google Scholar
  7. [7]
    M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide the to the Theory of NP-Completeness, Freeman, New York (1979).Google Scholar
  8. [8]
    T. Hirst and D. Harel, Taking it to the Limit: On Infinite Variants of NP-Complete Problems, unpublished manuscript (1992).Google Scholar
  9. [9]
    N. Immerman, Relational Queries Computable in Polynomial Time, Information and Control 68 (1986), 86–104.CrossRefGoogle Scholar
  10. [10]
    V. Kann, On the Approximability of NP-complete Optimization Problems, Dissertation (1992), Royal Institute of Technology, Stockholm.Google Scholar
  11. [11]
    Ph. Kolaitis and M. Thakur, Logical definability of NP optimization problems, to appear in Information and Computation.Google Scholar
  12. [12]
    Ph. Kolaitis and M. Thakur, Approximation properties of NP minimization classes, Proceedings of 6th IEEE Conference on Structure in Complexity Theory (1991), 353–366, to appear in Journal of Computer and System Sciences.Google Scholar
  13. [13]
    Ph. Kolaitis and M. Vardi, The decision problem for the probabilities of higher-order properties, Proceedings of 19th Annual ACM Symposium on Theory of Computing (1987), 425–435.Google Scholar
  14. [14]
    Ph. Kolaitis and M. Vardi, Infinitary logic and 0–1 laws, Information and Computation 98 (1992), 258–294.CrossRefGoogle Scholar
  15. [15]
    C. Lautemann, Logical definability of NP-optimization problems with monadic auxiliary predicates, Informatik-Bericht Nr. 1/92, Institut für Informatik, Johannes Gutenberg-Universität Mainz (1992).Google Scholar
  16. [16]
    A. Panconesi and D. Ranjan, Quantifiers and approximation, Proceedings of 22nd Annual ACM Symposium on Theory of Computing (1990), 446–456.Google Scholar
  17. [17]
    Ch. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity, Journal of Computer and System Sciences 43 (1991), 425–440.Google Scholar
  18. [18]
    Ch. Papadimitriou and M. Yannakakis, On the complexity of computing the V-C dimension, Extended Abstract (1992).Google Scholar
  19. [19]
    M. Vardi, Complexity of Relational Query Languages, Proc. of 14th Annual ACM Symposium on Theory of Computing (1982), 137–146.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Thomas Behrendt
    • 1
  • Kevin Compton
    • 2
  • Erich Grädel
    • 3
  1. 1.Mathematisches InstitutUniversität BaselBasel
  2. 2.EECS DepartmentUniversity of MichiganAnn Arbor
  3. 3.Lehrgebiet Mathematische Grundlagen der InformatikRWTH AachenAachen

Personalised recommendations