A Kahn principle for networks of nonmonotonic real-time processes

  • Robert Kim Yates
  • Guang Rong Gao
Paper Sessions Concurrency: Responsive Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 694)


We show that the input-output function computed by a network of asynchronous real-time processes is denoted by the unique fixed point of a Scott continuous functional even though the network or its components may compute a discontinuous function. This extends a well known principle of Kahn to an important class of parallel systems that has resisted the traditional fixed point approach.


Output Port Unique Fixed Point Output Stream Denotational Semantic Traditional Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Alur and D. Dill. The theory of timed automata. In J.W. deBakker, C. Huizing, W.P deRoever, and G. Rozenberg, editors, Real-Time: Theory in Practice, pages 45–73. Springer-Verlag, LNCS 600, 1991. Proceedings of the REX Workshop.Google Scholar
  2. 2.
    F. Boussinot. Proposition de sémantique dénotationelle pour des réseaux de processus avec operateur de mélange équitable. Theoretical Computer Science, 18:173–206, 1982.CrossRefGoogle Scholar
  3. 3.
    J. D. Brock and W. B. Ackerman. Scenarios: A model of non-determinate computation. In J. Diaz and I. Ramos, editors, International Colloquium on Formalization of Programming Concepts, pages 252–259. Springer-Verlag, LNCS-107, 1981.Google Scholar
  4. 4.
    E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clock temporal logic. In Proc. of the Fifth Annual IEEE Symposium on Logic in Computer Science, pages 402–413, 1990.Google Scholar
  5. 5.
    T.A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In J.W. deBakker, C. Huizing, W.P deRoever, and G. Rozenberg, editors, Real-Time: Theory in Practice, pages 226–251. Springer-Verlag, LNCS 600, 1991. Proceedings of the REX Workshop.Google Scholar
  6. 6.
    G. Kahn. The semantics of a simple language for parallel processing. In Information Processing 74, pages 471–475, 1974.Google Scholar
  7. 7.
    P. Kearney and J. Staples. An extensional fixed-point semantics for nondeterministic data flow. Theoretical Computer Science, 91:129–179, 1991.Google Scholar
  8. 8.
    R. M. Keller. Denotational models for parallel programs with indeterminate operators. In E. J. Neuhold, editor, Formal Descriptions of Programming Concepts, pages 337–365, Amsterdam, 1978. North-Holland.Google Scholar
  9. 9.
    R. Koymans. Specifying real-time properties with metric temporal logic. Real Time Systems, 2(4):255–291, 1990.Google Scholar
  10. 10.
    N. A. Lynch and E. W. Stark. A proof of the Kahn principle for input/output automata. Information and Computation, 82(1):81–92, 1989.CrossRefGoogle Scholar
  11. 11.
    M. Merritt, F. Modugno, and M.R. Tuttle. Time-constrained automata. In J.C.M. Baeten and J.F. Groote, editors, Proceedings of Concur '91, pages 408–423. Springer-Verlag, LNCS 527, 1991.Google Scholar
  12. 12.
    F. Moller and C. Tofts. A temporal calculus of communicating systems. In J.C.M. Baeten and J.W. Klop, editors, Proceedings of Concur '90, pages 401–415. Springer-Verlag, LNCS 458, 1990.Google Scholar
  13. 13.
    P. Panangaden. Abstract interpretation and indeterminacy. In S. D. Brookes, A. W. Roscoe, and G. Winskel, editors, Proc. of the Seminar on Concurrency, pages 497–511. Springer-Verlag, LNCS-197, 1985.Google Scholar
  14. 14.
    P. Panangaden and E. W. Stark. Computations, residuals and the power of indeterminacy. In T. Lepisto and A. Salomaa, editors, Proc. of the Fifteenth International Colloquium on Automata Languages and Programming, pages 348–363. Springer-Verlag, LNCS-317, 1988.Google Scholar
  15. 15.
    D. Park. The fairness problem and nondeterministic computing networks. In J.W. de Bakker and J. van Leeuwen, editors, Foundations of Computer Science IV, Part 2, pages 133–161. Mathematical Centre, Tract #159, 1983.Google Scholar
  16. 16.
    G.M. Reed and A.W. Roscoe. A timed model for communicating sequential processes. Theoretical Computer Science, 58:249–261, 1988.CrossRefGoogle Scholar
  17. 17.
    R.K. Yates. Semantics of timed dataflow networks. PhD thesis, McGill University, 1992.Google Scholar
  18. 18.
    R.K. Yates. Networks of real-time processes. Submitted for publication, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Robert Kim Yates
    • 1
  • Guang Rong Gao
    • 2
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations