Advertisement

Simulation-based comparison of hash functions for emulated shared memory

  • Curd Engelmann
  • Jörg Keller
Paper Sessions Architectures: Virtual Shared Memory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 694)

Abstract

The influence of several hash functions on the distribution of a shared address space onto p distributed memory modules is compared by simulations. Both synthetic workloads and address traces of applications are investigated. It turns out that on all workloads linear hash functions, although proven to be asymptotically worse, perform better than theoretically optimal polynomials of degree O(log p). The latter are also worse than hash functions that use boolean matrices. The performance measurements are done by an expected worst case analysis. Thus linear hash functions provide an efficient and easy to implement way to emulate shared memory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abolhassan, F., Drefenstedt, R., Keller, J., Paul, W. J., Scheerer, D.: On the Physical Design of PRAMs. Informatik — Festschrift zum 60. Geburtstag von Günter Hotz (Teubner, 1992) 1–19Google Scholar
  2. 2.
    Abolhassan, F., Keller, J., Paul, W. J.: On the cost-effectiveness of PRAMs. Proc. 3rd IEEE Symp. on Parallel and Distributed Processing (1991) 2–9Google Scholar
  3. 3.
    Akl, S. G.: The Design and Analysis of Parallel Algorithms. (Prentice-Hall, 1989)Google Scholar
  4. 4.
    Dietzfelbinger, M.: On limitations of the performance of universal hashing with linear functions. Reihe Informatik Bericht Nr. 84 Universität-GH Paderborn (1991)Google Scholar
  5. 5.
    Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable randomized algorithm for the closest-pair problem. Manuscript (1992)Google Scholar
  6. 6.
    Karlin, A. R., Upfal, E.: Parallel hashing: An efficient implementation of shared memory. J. Assoc. Comput. Mach. 35 (1988) 876–892MathSciNetGoogle Scholar
  7. 7.
    Karp, R. M., Ramachandran, V. L.: A survey of parallel algorithms for shared-memory machines. Handbook of Theoretical Computer Science Vol. A (Elsevier, 1990) 869–941Google Scholar
  8. 8.
    Mehlhorn, K., Vishkin, U.: Randomized and deterministic simulations of PRAMs by parallel machines with restricted granularity of parallel memories. Acta Inform. 21 (1984) 339–374Google Scholar
  9. 9.
    Norton, A., Melton, E.: A class of boolean linear transformations for conflict-free power-of-two stride access. Proc. Internat. Conf. on Parallel Processing (1987) 247–254Google Scholar
  10. 10.
    Ranade, A. G.: How to emulate shared memory. Proc. 28th IEEE Symp. on Foundations of Computer Science (1987) 185–194Google Scholar
  11. 11.
    Shiloach, Y., Vishkin, U.: An O(log n) parallel connectivity algorithm. J. Algorithms 3 (1982) 57–67CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Curd Engelmann
    • 1
  • Jörg Keller
    • 2
  1. 1.Computer Science DepartmentUniversität des SaarlandesSaarbrückenGermany
  2. 2.Centrum voor Wiskunde en InformaticaAB AmsterdamThe Netherlands

Personalised recommendations