Realms: A foundation for spatial data types in database systems

  • Ralf Hartmut Güting
  • Markus Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 692)


Spatial data types or algebras for database systems should (i) be fully general (which means, closed under set operations, hence e.g. a region value can be a set of polygons with holes), (ii) have formally defined semantics, (iii) be defined in terms of finite representations available in computers, (iv) offer facilities to enforce geometric consistency of related spatial objects, and (v) be independent of a particular DBMS data model, but cooperate with any. We offer such a definition in two papers. The central idea, introduced in this (first) paper, is to use realms as geometric domains underlying spatial data types. A realm as a general database concept is a finite, dynamic, user-defined structure underlying one or more system data types. A geometric realm defined here is a planar graph over a finite resolution grid. Problems of numerical robustness and topological correctness are solved below and within the realm layer so that spatial algebras defined above a realm enjoy very nice algebraic properties. Realms also interact with a DBMS to enforce geometric consistency on object creation or update.


Spatial data types algebra realm finite resolution numerical robustness topological correctness geometric consistency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AbB88]
    Abiteboul, S., and C. Beeri, On the Power of Languages for the Manipulation of Complex Objects. Technical Report 846, INRIA (Paris), 1988.Google Scholar
  2. [BeO79]
    Bentley, J.L., and T. Ottmann, Algorithms for Reporting and Counting Geometric Intersections. IEEE Trans. on Computers C-28 (1979), 643–647.Google Scholar
  3. [EdM88]
    Edelsbrunner, H., and E.P. Mücke, Simulation of Simplicity. Proc. ACM Symposium on Computational Geometry (Urbana-Champaign, Illinois), 1988.Google Scholar
  4. [EgFJ89]
    Egenhofer, M.J., A. Frank, and J.P. Jackson, A Topological Data Model for Spatial Databases. Proc. SSD 89 (Santa Barbara, California), 1989, 271–286.Google Scholar
  5. [GaNT91]
    Gargano, M., E. Nardelli, and M. Talamo, Abstract Data Types for the Logical Modeling of Complex Data. Information Systems 16, 5 (1991).Google Scholar
  6. [GrY86]
    Greene, D., and F. Yao, Finite-Resolution Computational Geometry. Proc. 27th IEEE Symp. on Foundations of Computer Science, 1986, 143–152.Google Scholar
  7. [GuiSS89]
    Guibas, L., D. Salesin, and J. Stolfi, Epsilon-geometry: Building Robust Algorithms from Imprecise Computations. Proc. SIAM Conf. on Geometric Design (Tempe, Arizona), 1989.Google Scholar
  8. [Gut84]
    Guttman, A., R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD Conf. 1984, 47–57.Google Scholar
  9. [Gü88a]
    Güting, R.H., Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems. Proc. of the Intl. Conf. on Extending Database Technology (Venice, Italy), 1988, 506–527.Google Scholar
  10. [Gü88b]
    Güting, R.H., Modeling Non-Standard Database Systems by Many-Sorted Algebras. Fachbereich Informatik, Universität Dortmund, Report 255, 1988.Google Scholar
  11. [Gü89]
    Güting, R.H., Gral: An Extensible Relational Database System for Geometric Applications. Proc. of the 15th Intl. Conf. on Very Large Databases (Amsterdam, The Netherlands), 1989, 33–44.Google Scholar
  12. [GüS93]
    Güting, R.H., and M. Schneider, Realm-Based Spatial Data Types: The ROSE Algebra. Fachbereich Informatik, FernUniversität Hagen, Report 141, 1993.Google Scholar
  13. [HeSW89]
    Henrich, A., H.-W. Six, and P. Widmayer, The LSD Tree: Spatial Access to Multidimensional Point-and Non-Point-Objects. Proc. of the 15th Intl. Conf. on Very Large Data Bases (Amsterdam, The Netherlands), 45–53.Google Scholar
  14. [JoC88]
    Joseph, T., and A. Cardenas, PICQUERY: A High Level Query Language for Pictorial Database Management IEEE Trans. on Software Engineering 14 (1988), 630–638.Google Scholar
  15. [LiN87]
    Lipeck, U., and K. Neumann, Modelling and Manipulating Objects in Geoscientific Databases. Proc. 5th Intl. Conf on the Entity-Relationship Approach (Dijon, France, 1986), 1987, 67–86.Google Scholar
  16. [NaME90]
    Nagy, G., M. Mukherjee, and D.W. Embley, Making Do with Finite Numerical Precision in Spatial Data Structures. Proc. 4th Intl. Symp. on Spatial Data Handling (Zürich, Switzerland), 1990, 55–65.Google Scholar
  17. [NiP82]
    Nievergelt, J., and F.P. Preparata, Plane-Sweep Algorithms for Intersecting Geometric Figures. Communications of the ACM 25 (1982), 739–747.Google Scholar
  18. [OrM88]
    Orenstein, J., and F. Manola, PROBE Spatial Data Modeling and Query Processing in an Image Database Application. IEEE Trans. on Software Engineering 14 (1988), 611–629.Google Scholar
  19. [OtTU87]
    Ottmann, T., G. Thiemt, and C. Ullrich, Numerical Stability of Geometric Algorithms. Proc. 3rd ACM Symp. on Computational Geometry, 1987, 119–125.Google Scholar
  20. [RoFS88]
    Rossopoulos, N., C. Faloutsos, and T. Sellis, An Efficient Pictorial Database System for PSQL. IEEE Trans. on Software Engineering 14 (1988), 639–650.Google Scholar
  21. [ScV89]
    Scholl, M., and A. Voisard, Thematic Map Modeling. Proc. SSD 89, (Santa Barbara, California), 1989, 167–190.Google Scholar
  22. [SvH91]
    Svensson, P., and Z. Huang, Geo-SAL: A Query Language for Spatial Data Analysis. Proc. SSD 91 (Zürich, Switzerland), 1991, 119–140.Google Scholar
  23. [Vo92]
    Voisard, A., Bases de données géographiques: du modèle de données à l'interface utilisateur. Ph.D. Thesis, University of Paris-Sud (Centre d'Orsay), 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Ralf Hartmut Güting
    • 1
  • Markus Schneider
    • 1
  1. 1.Praktische Informatik IVFernUniversität HagenHagenGermany

Personalised recommendations