Qualitative and topological relationships in spatial databases

  • Z. Cui
  • A. G. Cohn
  • D. A. Randell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 692)


In this paper, we present a spatial logic which can be used to reason about topological and spatial relationships among objects in spatial databases. The main advantages of such a formalism are its rigorousness, clear semantics and sound inference mechanism. We also show how the formalism can be extended to include orientation and metrical information. Comparisons with other formalisms are discussed.


Base Relation Spatial Database Topological Relation Topological Relationship Atomic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Aït-Kaci, et al: “Efficient Implementation of Lattice Operations,” ACM Trans. on Programming Languages and Systems, 11(1), 1989Google Scholar
  2. 2.
    J. F. Allen: “Maintaining Knowledge about Temporal Intervals,” Comm. ACM26(11), 1983.Google Scholar
  3. 3.
    M. Aurnague: “Contribution a l'etude de la semantique formelle de l'espace et du raisonnement spatial: la localisation interne en francais, semantique et structures inferentielles”, PhD thesis, l'Universite Paul Sabatier de Toulouse, 1991.Google Scholar
  4. 4.
    Van Benthem: The Logic of Time, Synthese Library vol 156, Reidel, London, 1982Google Scholar
  5. 5.
    B. L. Clarke: “A Calculus of Individuals Based on Connection,” Notre Dame Journal of Formal LOGIC., vol. 2, No. 3, 1981.Google Scholar
  6. 6.
    B. L. Clarke: “Individuals and Points”, Notre Dame Journal of Formal Logic Vol. 26, No. 1, 1985.Google Scholar
  7. 7.
    A. G. Cohn: “A More Expressive Formulation of Many Sorted Logic,” J. Autom. Reasoning., Vol. 3(2), pp. 113–200, 1987Google Scholar
  8. 8.
    A. G. Cohn, D. A. Randell and Z. Cui: “A Taxonomy of Logically Defined Qualitative Spatial Relations,” Proc International Workshop on Formal Ontology in Conceptual Analysis and Knowledge Representation, Padova, Ladseb-CNR Internal Report 01/93, ed N Guarino and R Poli, pp 149–158, 1993Google Scholar
  9. 9.
    Z. Cui, A. G. Cohn and D. A. Randell: “ Qualitative Simulation Based On A Logical Formalism Of Space And Time”, Proc AAAI, 1992a.Google Scholar
  10. 10.
    Z. Cui, A. G. Cohn and D. A. Randell: “Qualitative Simulation Based On A Logic Of Space And Time”, Proc. of QR92, 1992b.Google Scholar
  11. 11.
    M. Egenhofer: “A Formal Definition of Binary Topological Relationships,” In: W. Litwin and H. J. Schek, editors, Third International Conference on Foundations of Data Organization and Algorithms, Paris, France, Lecture Notes in Computer Science, Vol. 367, pages 457–472, Springer-Verlag, New York, NY, June 1989Google Scholar
  12. 12.
    M. Egenhofer:“Reasoning about Binary Topological Relations,” In: Proceedings of the Second Symposium on Large Spatial Databases, SSD'91 (Zurich, Switzerland, 1991), O. Gunther and H. J. Schek, Eds. Lecture Notes in Computer Science 525, pp 143–160.Google Scholar
  13. 13.
    M. Egenhofer and J. A. Herring: “A Mathematical Framework for the Definition of Topological Relationships,” In: Proceedings of Fourth International Symposium on Spatial Data Handling (Zurich, Switzerland, 1990), K. Brassel and H. Kishimoto, Eds.Google Scholar
  14. 14.
    M. Egenhofer and A. Frank: “Towards a Spatial Query Language: user interface considerations,” In: Proceedings of 14th International Conference on Very Large Data Bases (Los Angeles, CA, 1988) D. DeWitt and F. Bancilhon, Eds.Google Scholar
  15. 15.
    M. Egenhofer and K K Al-Taha: “Reasoning about Gradual Changes of Topological Relationships”, in Theoreies and Methods of Spatio Temporal Reasoning in Geographic Space, LNCS 639 Springer Verlag, 1992Google Scholar
  16. 16.
    K. D. Forbus, P. Nielsen and B. Faltings: “Qualitative spatial reasoning: the CLOCK project,” Art. Int. 51, pp. 417–471, Elsevier, 1991Google Scholar
  17. 17.
    C. Freksa: “Using Orientation Information for Qualitative Spatial Reasoning”, Berick Nr 11, Kognitionswissenschaft, Univ. Hamburg, 1992a.Google Scholar
  18. 18.
    C. Freksa: “Temporal Reasoning based on Semi-intervals,” Artificial Intelligence, 54, Elsevier, 1992bGoogle Scholar
  19. 19.
    A. M. Frisch and A. G. Cohn: “Thought and Afterthoughts on the 1988 Workshop on Principles of Hybrid Reasoning,” AI Magazine 1990Google Scholar
  20. 20.
    A Galton, Towards an integrated logic of space, time, and motion, to appear in Proc IJCAI93, Morgan Kaufmann, 1993.Google Scholar
  21. 21.
    D. Guenther and A. Buchmann: “Research Issues in Spatial Databases,” SIGMOD RECORD 19 (4), 1990Google Scholar
  22. 22.
    R. Güting: “Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems,” Advances in Database Technology, 1988.Google Scholar
  23. 23.
    D. Hernandez: “Using Comparative Relations to represent Spatial Knowledge”, Workshop RAUM, Univ. of Koblenz, 1990.Google Scholar
  24. 24.
    D. Hernandez: “Qualitative Representation of Spatial Knowledge”, PhD Dissertation, Fakultaet fuer Informatik, Technischen Universitaet Muenchen, Germann, 1992.Google Scholar
  25. 25.
    L. Joskowicz: “Commonsense Reasoning about Moving Objects: an Elusive Goal”, IBM T J Watson Research Center, Yorktown Heights, 1992.Google Scholar
  26. 26.
    B. Kuipers: “Qualitative Simulation,” Artificial Intelligence 29: 298–338, 1986Google Scholar
  27. 27.
    T. de Laguna: “Point, Line and Surface as sets of Solids” The Journal of Philosophy., Vol 19., pp. 449–461, 1922.Google Scholar
  28. 28.
    A. Mukerjee and G. Joe: “A Qualitative Model for Space”, Proc AAAI, 1990.Google Scholar
  29. 29.
    D. Pullar and M. Egenhofer: “Towards Formal Definitions of Topological Relations among Spatial Objects,” In: proceedings of Third International Symposium on Spatial Data Handling (Sydney, Australia, 1988), D. Marble, Ed.Google Scholar
  30. 30.
    D. Randell, A. G. Cohn and Z. Cui: “Naive Topology: modeling the force pump,” in Recent Advances in Qualitative Reasoning, ed B Faltings and P Struss, MIT Press, in press, 1992a.Google Scholar
  31. 31.
    D. A. Randell: “Analysing the Familiar: Reasoning about space and time in the everyday world,” PhD Thesis, Univ. of Warwick, UK 1991.Google Scholar
  32. 32.
    D. A. Randell, A. G. Cohn and Z. Cui: “Computing Transitivity Tables: a Challenge for Automated Theorem Provers,” Proc CADE11, 1992b.Google Scholar
  33. 33.
    D. Randell and A. G. Cohn: “Modelling Topological and Metrical Properties in Physical Processes,” in Principles of Knowledge Representation and Reasoning, ed. R. J. Brachman, H. Levesque and R. Reiter, Morgan Kaufmann, Los Altos. 1989.Google Scholar
  34. 34.
    D. A. Randell and A. G. Cohn: “Exploiting Lattice in a Theory of Space and Time,” Computers and Mathematics with Applications, 1992.Google Scholar
  35. 35.
    D. A. Randell, Z. Cui and A. G. Cohn: “A Spatial Logic based on Regions and Connection”, Proc 3rd Int Conf on the Principles of Knowledge Representation and Reasoning, Morgan Kaufmann, 1992a.Google Scholar
  36. 36.
    D. Randell, Z. Cui and A. G. Cohn: “An Interval Logic for Space based on “Connection”,” in proc. of ECAI92, 1992b Google Scholar
  37. 37.
    C. J. Rawlings, W. R. Taylor, J. Nyakairu, J. Fox and M. J. E. Sternberg: “Reasoning about Protein Topology using the Logic Programming Language PROLOG,” J. Mol. Graphics 3(4), 1985Google Scholar
  38. 38.
    N. Roussopoulos, C. Faloutsos and T. Sellis: “An Efficient Pictorial Database System for PSQL,” IEEE Transactions on Software Engineering 15 (5), 1988Google Scholar
  39. 39.
    M. Stickel: “Automated Deduction by Theory Resolution,” J. Automated Reasoning, 1, 1985Google Scholar
  40. 40.
    A. Tarski: “Foundations of the geometry of solids,” in Logic, Semantics, Metamathematics, trans. J. H. Woodger, Oxford Uni. Press, 1956Google Scholar
  41. 41.
    L. Vieu: “Semantique des relations spatials et inference spatio-temporelles: Une contribution a l'etude des structures formelles de l'espace en Language Naturel.”, PhD thesis, l'Universite Paul Sabatier de Toulouse, 1991.Google Scholar
  42. 42.
    A. N. Whitehead: “Process and Reality: Corrected Edition,” eds. D.R. Griffin and D.W. Sherburne, The Free Press, Macmillan Pub. Co., New York, 1978Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Z. Cui
    • 1
  • A. G. Cohn
    • 2
  • D. A. Randell
    • 3
  1. 1.Advanced Computation LaboratoryImperial Cancer Research FundLondonEngland
  2. 2.School of Computer StudiesUniversity of LeedsEngland
  3. 3.School of DentistryThe University of BirminghamBirminghamEngland

Personalised recommendations