Advertisement

Construction of S-invariants and S-components for refined Petri boxes

  • Raymond Devillers
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 691)

Abstract

The paper shows how to synthesize S-invariants and S-components for a refined Petri Box, from the characteristics of its constituents. The construction is based on the tree structure of the interface places gluing the refining fragments to the remaining part of the Box to be refined.

Keywords

Recursion Operator Refinement Operator Side Loop General Refinement Interface Place 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.Best, R.Devillers and J.Esparza: General Refinement and Recursion for the Box Calculus. Hildesheimer Informatik-Berichte 26/92 (1992).Google Scholar
  2. 2.
    E.Best, R.Devillers and J.Esparza: General Refinement and Recursion Operators for the Petri Box Calculus. Proceedings Stacs-93, P. Enjalbert et al. (eds.). Springer-Verlag Lecture Notes in Computer Science Vol. 665, pp.130–140 (1993).Google Scholar
  3. 3.
    E.Best, R.Devillers and J.Hall: The Box Calculus: a New Causal Algebra with Multilabel Communication. Advances in Petri Nets 1992, G. Rozenberg (ed.). Springer-Verlag Lecture Notes in Computer Science Vol. 609, pp. 21–69 (1992).Google Scholar
  4. 4.
    E.Best, R.Devillers, A.Kiehn and L.Pomello: Concurrent Bisimulations in Petri Nets. Acta Informatica 28, pp. 231–264 (1991).Google Scholar
  5. 5.
    E.Best, C.Fernández: Notations and Terminology on Petri Net Theory. GMD Arbeitspapiere 195 (1986).Google Scholar
  6. 6.
    E.Best and R.P.Hopkins: B(PN) 2 — A Basic Petri Net Programming Notation. To appear in the Proceedings of PARLE-93. Springer-Verlag Lecture Notes in Computer Science (June 1993).Google Scholar
  7. 7.
    R.Devillers: Maximality Preserving Bisimulation. TCS 102, pp. 165–183 (1992).Google Scholar
  8. 8.
    R.Devillers: Maximality Preservation and the ST-idea for Action Refinements. Advances in Petri Nets 1992. Lecture Notes in Computer Science 609, pp. 108–151 (1992).Google Scholar
  9. 9.
    R.Devillers: Tree Interfaces in the Petri Box Calculus. Draft Report LIT-265. Université Libre de Bruxelles (1992).Google Scholar
  10. 10.
    R.Devillers: General Refinement and Recursion for the Petri Box Calculus (Extended Abstract). Proceedings of the Workshop ”What Good are Partial Orders ?”, E.Best (ed.). Hildesheimer Informatik-Berichte 13/92, pp.57–76 (1992).Google Scholar
  11. 11.
    R.Devillers: S-invariant Analysis of Petri Boxes. Draft Report LIT-273. Université Libre de Bruxelles (December 1992).Google Scholar
  12. 12.
    R.Devillers: Towards a General Relabelling Operator for the Petri Box Calculus. Draft Report LIT-274. Université Libre de Bruxelles (January 1993).Google Scholar
  13. 13.
    R.P.Hopkins, J.Hall and O.Botti: A Basic-Net Algebra for Program Semantics and its Application to occam. Advances in Petri Nets 1992, G. Rozenberg (ed.). Springer-Verlag Lecture Notes in Computer Science Vol. 609, pp. 179–214 (1992).Google Scholar
  14. 14.
    R.Milner: Communication and Concurrency. Prentice Hall (1989).Google Scholar
  15. 15.
    W.Reisig: Petri Nets, an Introduction. EATCS Monographs on Theoretical Computer Science. Vol 4. Springer Verlag (1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Raymond Devillers
    • 1
  1. 1.Laboratoire d'Informatique ThéoriqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations