A subset of Lotos with the computational power of Place/Transition-nets

  • Michel Barbeau
  • Gregor v. Bochmann
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 691)


In this paper, we define a subset of Lotos that can be modelled by finite Place/Transition-nets (P/T-nets). That means that specifications in that Lotos subset can be translated into finite P/T-nets and validated using P/T-net verification techniques. An important aspect of our work is that we show that conversely P/T-nets can be simulated in our Lotos subset. It means that the constraints we put on Lotos in order to obtain finite nets are minimally restrictive. We may also conclude that our Lotos subset and P/T-nets have equivalent computational power. To the best of our knowledge, no such bidirectional translation scheme has been published before.


Inference Rule Parallel Composition Reachability Graph Verification Technique Syntactical Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Azem 84]
    P. Azema, G. Juanole, E. Sanchis, M. Montbernard, Specification and Verification of Distributed Systems Using Prolog Interpreted Petri Nets, 7th International Conference on Software Engineering, 1984.Google Scholar
  2. [Barb 91a]
    M. Barbeau, G. v. Bochmann, Extension of the Karp and Miller Procedure to Lotos Specifications, Computer Aided Verification'90, ACM/AMS DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 3, 1991, pp. 103–119; and Springer-Verlag, LNCS 531, pp. 333–342.Google Scholar
  3. [Barb 91b]
    M. Barbeau, G. v. Bochmann, The Lotos Model of a Fault Protected System and its Verification Using a Petri Net Based Approach, Workshop on Computer-aided verification, Aalborg, Danemark, 1991; and Springer-Verlag, LNCS 575.Google Scholar
  4. [Bolo 87]
    T. Bolognesi, E. Brinksma, Introduction to the ISO Specification Language Lotos, Computer Networks and ISDN Systems, Vol. 14, No. 1, 1987, pp. 25–59.Google Scholar
  5. [Bolo 90]
    T. Bolognesi, A Graphical Composition Theorem for Networks of Lotos Processes, Proceedings of Distributed Computing Systems, Paris, May–June 1990, pp. 88–95.Google Scholar
  6. [Boud 85]
    G. Boudol, G. Roucairol, R. de Simone, Petri Nets and Algebraic Calculi of Processes, Advances in Petri Nets, 1985, pp. 41–58.Google Scholar
  7. [Bram 83]
    G. W. Brams, Réseaux de Petri: Théorie et Pratique — T.1. Théorie et analyse, Masson, Paris, 1983.Google Scholar
  8. [Cind 83]
    F. de Cindio, G. de Michelis, L. Pomello, C. Simone, Milner's Communicating Systems and Petri Nets, in: A. Pagnoni, G. Rozenberg (Eds.), Application and Theory of Petri Nets, Springer-Verlag, IFB 66, 1983, pp. 40–59.Google Scholar
  9. [Dega 88]
    P. Degano, R. de Nicola, U. Montanari, A Distributed Operational Semantics for CCS Based on Condition/Event Systems, Acta Informatica, Vol. 26, 1988, pp. 59–91.Google Scholar
  10. [Gara 89]
    H. Garavel, E. Najm, Tilt: From Lotos to Labelled Transition Systems, in: P. H. J. van Eijk, C. A. Vissers, M. Diaz (Eds.), The Formal Description Technique Lotos, North-Holland, 1989, pp. 327–336.Google Scholar
  11. [Gara 90]
    H. Garavel, J. Sifakis, Compilation and Verification of Lotos Specifications, PSTV X, Ottawa, 1990, pp. 359–376.Google Scholar
  12. [Glab 87]
    R. J. van Glabbeek, F. W. Vaandrager, Petri Net Models for Algebraic Theories of Concurrency, Proceedings of PARLE, Vol. II, LNCS 259, Springer-Verlag, 1987.Google Scholar
  13. [Golt 84a]
    U. Goltz, A. Mycroft, On the Relationship of CCS and Petri Nets, in: J. Paredaens (Ed.), Proceedings of ICALP 84, LNCS 172, Springer-Verlag, 1984, pp. 196–208.Google Scholar
  14. [Golt 84b]
    U. Goltz, W. Reisig, CSP-Programs as Nets with Individual Tokens, in: G. Rozenberg (Ed.), Advances in Petri Nets 1984, LNCS 188, Springer-Verlag, 1985, pp. 169–196.Google Scholar
  15. [Golt 88]
    U. Goltz, On Representing CCS Programs by Finite Petri Nets, in: M. Chytil et al. (Eds.), Mathematical Foundations of Computer Science 1988, LNCS 324, Springer-Verlag, 1988, pp. 339–350.Google Scholar
  16. [Gotz 86]
    R. Gotzhein, Specifying Abstract Data Types with Lotos, Proc. of PSTV VI, Montréal, 1986.Google Scholar
  17. [ISO 88]
    ISO, Lotos — A Formal Description Technique Based on the Temporal Ordering of Observational Behavior, IS 8807, E. Brinksma (Ed.), 1988.Google Scholar
  18. [Kasa 82]
    T. Kasai, R. E. Miller, Homomorphisms Between Models of Parallel Computation, J.C.S.S., Vol. 25, 1982, pp. 285–331.Google Scholar
  19. [Marc 89]
    S. Marchena, G. Leon, Transformation from Lotos Specs to Galileo Nets, in: K. J. Turner (Ed.), Formal Description Techniques, North-Holland, 1989.Google Scholar
  20. [Niel 86]
    M. Nielsen, CCS and its Relationship to Net Theory, in: W. Brauer, Advances in Petri Nets 1986, Part II, LNCS 255, Springer-Verlag, 1986.Google Scholar
  21. [Olde 91]
    E.-R. Olderog, Nets, Terms and Formulas: Three Views of Concurrent Processes and their Relationships, Cambridge Tracts in Theoretical Computer Science 23, Cambridge University Press, 1991.Google Scholar
  22. [Park 81]
    D. M. R. Park, Concurrency and Automata on Infinite Sequences, Proceedings of 5th GI Conf. on Theoretical Computer Science, LNCS 104, Springer-Verlag, 1981, pp. 167–183.Google Scholar
  23. [Pete 81]
    J. L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice Hall, 1981.Google Scholar
  24. [Reis 84]
    W. Reisig, Partial Order Semantics Versus Interleaving Semantics for CSP-like Languages and Its Impact on Fairness, in: G. Goos, J. Hartmanis, 11th Colloquium on Automata, Languages and Programming, LNCS 172, Springer-Verlag, 1984, pp. 403–413.Google Scholar
  25. [Taub 89]
    D. Taubner, Finite Representation of CCS and TCSP Programs by Automata and Petri Nets, LNCS 369, Springer-Verlag, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Michel Barbeau
    • 1
  • Gregor v. Bochmann
    • 2
  1. 1.Département de mathématiques et d'informatiqueUniversité de SherbrookeSherbrookeCanada
  2. 2.Département d'IROUniversité de MontréalMontréalCanada

Personalised recommendations